Meta-analysis: On average, undergraduate students' intelligence is merely average

Bob Uttl ${ }^{1}$, Victoria Violo ${ }^{2}$, Lacey Gibson ${ }^{3}$
${ }^{1}$ Psychology Department, Mount Royal University, Calgary, Alberta, Canada
${ }^{2}$ Psychology Department, University of British Columbia Okanagan, Kelowna, British
Columbia, Canada
${ }^{3}$ Psychology Department, Western University, London, Ontario, Canada
Corresponding Author:
Bob Uttl
Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, Canada, T3E 6K6
Email address: uttlbob@gmail.com

NOTICE TO A READER

(February 8, 2024)

[^0]Unexpectedly, on February 6, 2024, the Frontiers sent an email to the authors stating in part:

Dear Professor Uttl,
Thank you for your submission "Meta-analysis: On average, undergraduate students' intelligence is merely average" to Frontiers in Psychology.

We are sorry to say that we are rejecting the manuscript in its current form. Following the abstract being published online, a number of overstated claims were brought to the attention of our Research Integrity team. These claims were raised to the Specialty Chief Editor, who has since highlighted issues with the reporting, methods and analysis and the scope fit for the journal that warrant rejection.
...
Kind regards,
Catriona Leslie
The email did not mention nor acknowledge that the paper was already accepted, proofs approved, etc.. Furthermore, the email did not disclose what the allegations were, did not disclose who made them, and Frontiers in Psychology never bothered to contact any of the authors regarding the alleged allegations. As to the "issues" highlighted by the unidentified "Specialty Chief Editor", the issues as detailed were unfounded.

On February 6, 2024, at 8:39AM (Mountain Time), we immediately alerted the Frontiers in Psychology that the paper was already accepted. As of February 8, we received no response. On February 6, 2024, at 11:19PM (Mountain Time), we lodged a complaint about the Frontiers conduct with Ms. Catriona Leslie, Dr. Jaswal, and Dr. Cleeramans (including psychology.editorial.office@frontiersin.org and production.office@frontiersin.org). In the complaint, we also demanded an immediate refund of the APC fees (USD 3,295.00). As of February 8, 2024, we received no response nor acknowledgment of our complaint and the fees have yet to be refunded by Frontiers. As of now, February 8, 2024, despite the Frontiers' rejection of our already accepted paper, the Frontiers continues to display our abstract on their website and our paper as accepted in Frontiers in Psychology.

February 9, 2024 Update: On February 9, 2024, Frontiers sent us another rejection email stating: "The reason for this decision [rejection] is: The manuscript could not be sufficiently revised by the authors to address the concerns by the reviewers or editor during the review process." As is obvious, the statement is patently false. The historical record shows that we addressed the reviewers' concerns; the reviews were finalized; the editor, Dr. Snehlata Jaswall, accepted the manuscript; and the Frontiers stated on its own webpages that it was accepted and published the abstract.

Please visit https://bobuttl.net for further updates and more information.

Abstract

Background. According to a widespread belief, the average IQ of university students is 115 to 130 IQ points, that is, substantially higher than the average IQ of the general population ($M=$ $100, S D=15$). We traced the origin of this belief to obsolete intelligence data collected in 1940s and 1950s when university education was the privilege of a few. Examination of more recent IQ data indicate that IQ of university students and university graduates dropped to the average of the general population. The decline in students’ IQ is a necessary consequence of increasing educational attainment over the last 80 years. Today, graduating from university is more common than completing high school in the 1940s. Method. We conducted a meta-analysis of the mean IQ scores of college and university students samples tested with Wechsler Adult Intelligence Scale between 1939 and 2022. Results. The results show that the average IQ of undergraduate students today is a mere 102 IQ points and declined by approximately 0.2 IQ points per year. The students' IQ also varies substantially across universities and is correlated with the selectivity of universities (measured by average SAT scores of admitted students). Discussion. These findings have wide-ranging implications. First, universities and professors need to realize that students are no longer extraordinary but merely average, and have to adjust curricula and academic standards. Second, employers can no longer rely on applicants with university degrees to be more capable or smarter than those without degrees. Third, students need to realize that acceptance into university is no longer an invitation to join an elite group. Fourth, the myth of brilliant undergraduate students in scientific and popular literature needs to be dispelled. Fifth, estimating premorbid IQ based on educational attainment is vastly inaccurate, obsolete, not evidence based, and mere speculations. Sixth, obsolete IQ data or tests ought not to be used to make high-stakes decisions about individuals, for example, by clinical psychologists to opine about intelligence and cognitive abilities of their clients.

Keywords: intelligence, IQ, undergraduate students, Flynn Effect, high-stakes decisions, demographic adjustments, Wechsler Adult Intelligence Test

109

Introduction

What is the average IQ of undergraduate students? According to a widespread belief, the average IQ of university students is somewhere between 115 to 130, that is, substantially higher than the average IQ of the general population ($M=100, S D=15$). For example, in a series of widely cited articles on intelligence, life chances, and occupational success, Gottfredson (Gottfredson, 1997, 1998, 2002, 2003) maintained that "College Format" IQs ranged from 112 to 120. Figure 1 is an adaptation of the figures published in several of Gottfredson's articles. The figure shows the bell curve symmetrical distribution of IQ scores, with a mean of 100 and a standard deviation of 15 , with "life chances", "training potential", and "career potential" marked within the figure. Similarly, in Assessing Adolescent and Adult Intelligence, Kaufman and Lichtenberger (2005) wrote that college graduate average IQ is 115 (see p. 16, Figure 1.1), citing as sources of this information Matarazzo (1972, p. 178); Jensen (1980, p. 113); and Reynolds et al. (1987). Kaufman and Lichtenberger (2005) also cite Heaton et al. (2001), unpublished manuscript, to claim that college graduates' mean IQ on the Wechsler Adult Intelligence Scale III (WAIS-III) standardization sample was 116.8. (p. 115). More recently, in the classic text Neuropsychological Assessment, Lezak et al. (2012) wrote that "the average college graduate typically scores one to two standard deviations [115 to 130 IQ points] above the general population mean on tests of this type [vocabulary tests]" (p. 167), citing Anastasi (1965) as the source of this information. Not surprisingly, the notion that undergraduate students' IQ is substantially higher than that of general population found its way into popular magazines. For example, Scientific American published an article by Gottfredson (1998) with a version of Figure 1 included and the "college format" having an IQ in the range of 112 to 120 . More recently, Henderson (2019), wrote, in Psychology Today, that "the average IQ of a college graduate is about 114."

In this article, we first examine the origins of this belief of brilliant undergraduate students. Second, we critically review the existing evidence demonstrating that this belief is a myth - a fairy tale from a bygone era that only a few still living remember. Third, we report a new study that examined changes in undergraduate students IQs from 1940s to present. Fourth, we discuss wide-ranging implications of our findings as well as the disastrous consequences of believing in myths and fairy tales of very smart undergraduate students.

The origins of the belief of brilliant undergraduate students

What is the origin of this belief of brilliant undergraduate students? Careful examination of data cited in support of this belief shows that the data is (a) obsolete, collected decades or nearly a century ago, (b) often not representative of general nor specific populations, (c) often collected under unknown conditions and circumstances, and (d) often so poorly described that the very basic characteristics of samples cannot be established. For example, Gottfredson (1997) cited data from the Wonderlic Personnel Test (WPT) (Wonderlic, 1992) - a 20 minute, 50 item long multiple choice test - to support her strong claims about the relationship between IQ and life chances, training style, career potential, as well as her claim that IQ of "college format" ranges from 112 to 120 . Wonderlic (1992) itself states that the "mean score for college freshmen" is WAIS IQ 115 or WPT 24 and that "college graduate mean [WAIS] IQ [is] 120" or WPT 29 (see
p. 26). However, within Wonderlic’s (1992) sample, college graduates' IQ actually ranged from 80 to over 146 WAIS IQ points (see Wonderlic, 1992, p. 25, for a range of WPT scores and p. 20 for translation of WPT scores to WAIS Full Scale IQ (FSIQ). Most critically, Wonderlic’s (1992) "norms" (p. 25) and specific occupation norms (p. 27) are actually not norms at all; they are scores of some job applicants somewhere, assessed under unknown circumstances, and assessed by unknown assessors. Examinees were never sampled to match any population census data, were not tested under standardized conditions, and nearly nothing is known about the examinees themselves. In fact, Wonderlic (1992) indicates that the scores were reported back to Wonderlic Personnel Test Inc. by various companies that decided to use WPT to examine job applicants. For example, "Teacher" norms with a mean WPT of 26 or WAIS FSIQ of 113 were reported back by ten unknown companies and reflected scores of 500 applicants for some unspecified teaching jobs (see p. 27). No other information was provided about these teaching job applicants, including their age, education level, or primary teaching assignments (e.g., early childhood, elementary, secondary/high school, college).

Similarly, Kaufman and Lichtenberger's (2005) first source, Matarazzo (1972), states that the WAIS IQ of college graduates is 115 (see Table 7.3 in Mararazzo, 1972) and informs that the data in the table "is based on our own clinical experience and should provide the interested reader with data for a good working rule of thumb [emphasis added]" (p. 178). Kaufman and Lichtenberger's (2005) second source, Jensen (1980), states that the mean IQ of college graduates is 120 and the mean IQ of "freshmen in typical four-year college" is 115 and states that these estimates were "compiled by Cronbach (1960, p. 174)". In turn, Cronbach (1960) cites several sources published between 1930 and 1958, including a review of previously published studies by Plant and Richardson (1958) who concluded that an average college students’ Wechsler-Bellevue Intelligence Scale (WBIS) (Wechsler, 1939) FSIQ is 120, and the average college freshmen WBIS FSIQ is 116 (p. 230). Kaufman and Lichtenberger's (2005) third source, Reynold et al. (1987), gives the mean WAIS-R FSIQ of college graduates (i.e., individuals with 16 or more years of education, including those with MA and PhD degrees) as 115.17 based on 244 adults of all ages with at least that level of education in WAIS-R (Wechsler, 1981) normative sample (tested in 1980). Kaufman and Lichtemberger's (2005) source for WAIS-III FSIQ of college graduates being 116.8, Heaton et al. (2001), could not be examined as it was not published. However, Longman et al. (2007) analysis of WAIS-III normative sample showed that college graduates, that is, those with 16 or more years of education, had the mean WAIS-III FSIQ of only 111.6 (p. 429). Finally, Lezak et al.’s (2012) only citation is Anastasi (1965), also an ancient text.

Major reasons why undergraduate students' IQ cannot be as high as $\mathbf{1 1 5}$ or even higher

The reliance on obsolete data, dating back decades and nearly a century to claim that college format's IQ ranges from 112 to 120, that the average university student IQ is 115 or higher, and that the mean IQ of college graduates is 115 or even 120 is unwarranted for at least three well-established reasons: generational increases in intelligence called Flynn Effect, massive increases in educational attainment, and structure of WAIS normative data.

Flynn Effect. IQ scores have been rising at a rate of 0.3 per year or 3 IQ points per decade (Fletcher et al., 2010; Flynn, 1984; Trahan et al., 2014). As a result, an examinee scoring 115 on an intelligence test normed in 1950 would score only 93 on an intelligence test normed in 2022. To illustrate, Flynn Effect is observed in successive versions of perhaps one of the most commonly used intelligence tests - WAIS and its predecessor WBIS. The WBIS sample was
"mostly urban from the City and State of New York" and exclusively Caucasian, and thus, not representative of the US population (Wechsler, 1939), whereas WAIS versions samples were designed to be representative of the US population (Wechsler, 1955, 1981, 2008, 1997).

Table 1 shows the mean Verbal IQ (VIQ), Verbal Comprehension Index (VCI), Performance IQ (PIQ), Perceptual Reasoning Index, and FSIQ scores of three samples of examinees, each completing two temporally adjacent versions of WAIS, the IQ differences between the two adjacent WAIS versions, and the overall cumulative difference between the WAIS and WAIS-IV mean IQ. Over 53 years between WAIS-IV and WAIS, FSIQ increased by 13.3 points or 0.25 per year. Thus, if an average teacher’s WAIS FSIQ was truly 113, as Wonderlic (1992) claimed, this same average teacher would be expected to score only 99.7 points when assessed by the more recently normed and up-to-date WAIS-IV. Using 0.3 IQ points per year - an estimate based on a much larger set of studies - this same average teacher would be expected to score only 97.1. Simply put, the Flynn Effect makes it clear that it is unwarranted and patently wrong to use decades-old IQ data to make claims about the IQ of populations, samples, or individuals today. It is also unwarranted and patently wrong to compare the IQ scores obtained by samples or individuals on today's intelligence tests to outdated IQ data on tests normed decades or nearly a century ago.

Fletcher (2010) put this succinctly:

> We would not expect pediatricians to use a height/weight chart from another country or century to assess a child's percentile rank in height or weight; if they did, we would expect corrections so that the percentile reflects the current, national distribution. Correcting an IQ score is a simple procedure that avoids having to change standards. Thus, if 15 -year-old IQ norms are used, either the score itself must be corrected by about 4.5 points $(0.3 \times 15$ years = 4.5$)$ or the cut-point for ID [intellectual disability] needs to be corrected to 74.5 because the mean IQ of a contemporary sample using the old norms would be 104.5 .

As Fletcher pointed out, if one wants to use obsolete norms for any reason, at the very least, one must adjust either the score or the norms for Flynn Effect. Trahan (2014) concurs that "the need to correct IQ test scores for norms obsolescence in high-stakes decision making is abundantly clear" and "especially important when IQ test scores are compared across a broad period of time..." (p. 1352). Unfortunately, these necessary adjustments to the college students' IQ "norms" were not reported nor considered in Gottfredson (Gottfredson, 1997, 1998, 1998, 2003) or Kaufman and Lichtenberger (2005).

Furthermore, it has been argued that a failure to adjust obsolete test scores or norms for Flynn Effect is unscientific, unethical, and malpractice (Fletcher et al., 2010; Flynn, 2007; Gresham \& Reschly, 2011; Reynolds et al., 2010) For example, Gresham and Reschly (2011) observed that "failure to account for the Flynn Effect in test score interpretation in Atkins or any other cases is a violation" of Principle 9.08 Obsolete Tests and Outdated Test Results of the Ethical Principles of Psychologists and Code of Conduct stating, in part: "(B) Psychologists do not base such decisions or recommendations on tests and measures that are obsolete and not useful for the current purpose."

Similarly, Reynolds et al. (2010) concluded (p.480):

242

...the failure to apply the Flynn correction [in Atkins cases] as we have described it is tantamount to malpractice. No one's life should depend on when an IQ test was normed.

Increases in Educational Attainment. The proportion of the population enrolling in and graduating with university degrees has been increasing steeply since at least 1940 (US Census, 2022). Figure 2 shows the proportion of the US population, aged 25 years and older, who completed high school, had 1 to 3 years of college, and attained four or more years of college (i.e., the college graduates), from 1940 to 2021. Percentages of individuals with high school increased from 24.1 to 91.1 , with 1 to 3 years of college from 10.0 to 63.2, and with four or more years of college from 4.6 to 37.9.

The basic laws of mathematics dictate that college students' and college graduates’ IQs must have declined substantially over the last 80 years. For example, if 80% of the population pursues undergraduate education and if they have an average IQ of 115, the remaining 20% of the population would have to have an average IQ of 40 to maintain the average IQ of the entire population at 100. In fact, the IQ of college students did decline substantially. Table 2 shows FSIQ by years of education for normative samples of WAIS-R (normed between 1976 and 1980 or in 1978 on average), WAIS-III (normed in 1996), and WAIS-IV (normed from March 2007 to April 2008 or, taking a midpoint, in 2007). Over 29 years, the FSIQ of college graduates (i.e., 16 or more years of education) dropped from 115.3 to 107.4, or 0.27 IQ points per year. Similarly, the IQ of examinees with some college education (1 to 3 years) who did not (yet) graduate dropped from 107.4 to 101.4. Finally, the IQ of examinees who attended at least some college (i.e., 13 years of education or more) dropped to FSIQ 104.5 by the 2008 standardization of WAIS-IV. Again, massive increases in college enrolments over the last $80+$ years make it evident that it is unwarranted and wrong to use decades-old IQ data to make claims about the average IQ of college students or college graduates today. WAIS normative sample data confirm that college students' and college graduates' IQs have dropped far below the levels they once were and suggests that college students' and graduates' IQs today are not appreciably different from the average IQ of the entire population.

Figure 3 shows the IQ ranges for the college graduates (i.e., individuals with 16+ years of education) and the individuals with some college education (i.e., 13-15 years of education within WAIS-R, WAIS-III, and WAIS-IV normative samples). For WAIS-IV, the most recent version of the Wechsler test, the normative sample data indicate that the IQ of the middle 95% of the college graduates (i.e., individuals with 16+ years of education) ranges from 80 to 135 ($M=107.4, S D=$ 13.9), and that IQ of the middle 95% of the individuals with some college education (i.e., 13-15 years of education) ranges from 76 to $127(M=101.4, S D=13.1)$. Clearly, according to WAISIV normative sample data, the college graduates and individuals with some college education today (or more precisely in 2007) are, on average, merely average. Only minority of students are scoring above 110 IQ points, and are in Gottfredson’s "Out Ahead" or "College Format" category. Equally clearly, "College Format" today is not what "College Format" used to be 70 to 100 years ago.

Structure of WAIS Normative Data Analyses. The average IQ of the WAIS-IV normative sample with 13-15 years of education and with 16 or more years of education (college graduates) does not reflect the average IQ of today's college students or college graduates. Normative data overestimates the average IQ of today's college students and graduates because many of the examinees included in normative samples attended colleges and/or graduated from colleges

287

288
decades ago (i.e., when colleges and universities were far more selective and when average IQs of college students were much higher). Accordingly, we would expect that the average WAIS-IV FSIQ of undergraduate students (students with 13 or more years of education) as well as fresh college graduates (students with 16 or more years of education) is still lower than 104.5 and 107.4, respectively, and is close to 100 .

The undergraduate students IQ differ across universities and fields

Sweeping claims about undergraduate students' average IQ are also unwarranted for at least two other reasons. First, undergraduate students' average intelligence varies hugely with the field of study. Figure 4 shows College Board average SAT ERW (Evidence-Based Reading and Writing) and Math scores for the 2021 high school graduates who took the SAT during high school by intended college major (College Board, 2021a). The overall ERW and Math means of SAT users were $533(S D=108)$ and $528(S D=120)$, respectively (the two means are indicated by dotted lines). The figure shows that fields such as "Education" and "Public Administration and Social Services" are below the mean on both ERW and Math. In contrast, fields such as "Mathematics and Statistics" and "Physical Sciences" are approximately 1 SD (equivalent to about 15 IQ points) above the mean on both ERW and Math. Notably, College Board also provided SAT scores for Nationally Representative Sample (College Board, 2021b). The Nationally Representative Sample, that is, the sample of all high school students rather than only those who typically take the SAT, averaged 507 on ERW and 506 on Math (the two means are indicated by dashed lines), and 1010 on SAT Total. Using the Nationally Representative Sample, the difference between, for example, Education vs. Mathematic and Statistics, using the IQ scale, is over 16 IQ points (Education SAT Total 101.6 vs. Mathematic and Statistics SAT Total 117.9).

Similarly, Figure 5 shows Educational Testing Service (ETS) average Graduate Record Exam (GRE) Verbal and Quantitative scores by the intended broad graduate major field for individuals tested between July 1, 2017 and June 2020 (ETS, 2021). The overall GRE Verbal mean was $150.37(S D=8.59)$ and GRE Quantitative was $153.66(S D=9.44)$ based on over 1.5 million test takers (the two means are indicated by dotted lines). GRE data confirm large differences between the fields. For example, Education/Early Childhood means are approximately $1 S D$ or more below Physics and Astronomy on both GRE Quantitative and GRE Verbal. Large differences exist even within fields. For example, Education/Early Childhood means are approximately 0.5 and $1 S D$ below Education/Secondary on GRE Quantitative and GRE Verbal, respectively.

Second, undergraduate students' IQs also vary hugely depending on which university students are or were attending. Currently, there are over 6,000 $2+$ and 4 years colleges and universities in US. Some colleges and universities have open admission policies, in essence admitting anyone who graduated from high school and applied. Other colleges and universities are very selective and take only a few top percent of those who dare to apply. Importantly, approximately 2,000 US colleges and universities are included in the Integrated Postsecondary Education Data System (IPEDS). The IPEDS data are available from US National Center for Education Statistics (https://nces.ed.gov/ipeds) and include $25^{\text {th }}$ and $75^{\text {th }}$ percentile scores for SAT and ACT of admitted students, the number of students who applied, and the number of admitted students, allowing determination of each institutions' admission rate. Because the data file does not include the mean nor median SAT or ACT scores, the mean was estimated by taking the midpoint between the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles. Figure 6 shows the IPEDS data from the 2020-21
admission data file. Figure 6 top left panel shows the relationship between the means SAT Math and SAT ERW scores of admitted students, $r(1082)=.95, p<.001$. Figure 6 top right panel shows the relationship between the means of SAT Total and ACT Composite scores of admitted students, $r(1059)=.96, p<.001$. Figure 6 bottom left panel shows the relationship between admission rate and SAT Total of admitted students, $r(1082)=-.51, \mathrm{p}<.001$. California Institute of Technology students have the highest SAT Total $(M=1555)$ and the admission rate is only 6.7%. Figure 6 botton right panel shows the distribution of SAT Total means of admitted students - the solid vertical line represents the mean SAT Total of the Nationally Representative Sample (i.e., the sample of test takers with a presumed mean IQ of 100), and the dashed vertical lines indicate $\pm 1 S D$. This panel shows that undergraduate students in a large proportion of these institutions have mean IQ of less than 100.

One may argue that SAT, ACT, and GRE do not measure intelligence but rather achievement. However, numerous studies have established that SAT, ACT, and GRE are all good measures of intelligence and are widely used as intelligence measures; they are highly intercorrelated (Coyle \& Pillow, 2008), highly correlated with various intelligence tests including various Wechsler tests (Baade \& Schoenberg, 2004; Collins, 1999; Frey, 2019; Frey \& Detterman, 2004; Koenig et al., 2008), employ similar test items as intelligence tests (Frey, 2019), and depend on the same underlying cognitive processes. The SAT itself is based on the Army Alpha and Beta tests and the Binet' intelligence tests (Frey, 2019). A number of researchers proposed that measures such as SAT can be used as measures of pre-morbid IQ and developed regression equations predicting Wechsler FSIQs (Collins, 1999; Frey, 2019).

Rationale and objectives of current study

The above review of previously published analyses of Wechsler Intelligence Tests normative samples' IQs indicates that the IQ of undergraduate students and university graduates today has declined to near the general population IQ of 100. Moreover, the SAT and GRE data indicate that undergraduate students' average SAT scores are close to the average SAT scores of the entire population of their age-matched peers. Finally, both the SAT and GRE data demonstrate that students' SAT and GRE average scores vary substantially depending on the selectivity of specific universities and specific fields of study.

However, the evidence of the decline in undergraduate students' IQ on Wechsler tests, based on Wechsler normative samples, has several limitations. First, Wechsler normative samples describe FSIQs of examinees with 13 to 15 years of education (1 to 3 years of college or university) and 16+ years of education (university graduates, including those with MA and PhD degrees) for all adults, including those who obtained the specified level of education decades ago when only a few adults went to study to colleges and universities. Accordingly, the mean IQ of undergraduate students at any given time is likely lower than the mean IQ of all adults with the equivalent level of educational attainment. Second, the last Wechsler test was normed in 2007, some 15 years ago. Given that the proportion of the eligible population going on to pursue college and university-level education has continued to rise, the mean IQ of undergraduate students has likely continued to decline. Third, Wechsler's normative samples are too limited to provide any insight into how much the mean IQs of undergraduate students vary across universities. The SAT (and ACT) data indicate that the range between the least and the most selective universities exceeds three standard deviations, the equivalent of 45 IQ points (see Fig 6). Accordingly, it is likely that the mean IQ of undergraduate students varies substantially across
the universities and correlates with the mean SATs of admitted students. Finally, it is largely unknown how Wechsler normative samples were recruited.

Therefore, independent evidence of the decline of the IQ of undergraduate students is both necessary and valuable to address some of the limitations detailed above and to examine the decline in undergraduate students' IQ using different and more robust methodology. The main objective of the present study is to conduct a meta-analysis of the mean IQ scores of college and university student samples tested with Wechsler intelligence tests (WBIS, WAIS, WAIS-R, WAIS-III, WAIS-IV) reported in the literature in order to answer the following questions: First, what is the average IQ of undergraduate students today? Second, how much did undergraduate students' IQ decline since the 1940s (since the publication of the WBIS, the first Wechsler Intelligence test)? Third, how much does mean undergraduate students' IQ vary across the universities? Fourth, does the mean undergraduate students' IQ correlate with the mean SAT scores of admitted students, even if these mean SAT scores were not obtained at the same time as the mean Wechsler IQs?

Method

Inclusion and exclusion criteria

In order for a study to be included in the meta-analysis, a study had to meet a set of inclusion criteria. First, the study had to report, at minimum, one of the intelligence scales or index scores (i.e., FSIQ, VIQ, PIQ, VCI, PRI, WMI, PSI). Second, the study had to use either US or Canadian WAIS versions (i.e., WBIS, WAIS, WAIS-R, WAIS-III, WAIS-IV). Third, examinees had to be tested either in Canada or USA. Fourth, examinees had to be primarily undergraduate students (we allowed a mix of undergraduate and graduate students as long as the majority of students in a sample were undergraduate students). Fifth, samples of students had to be broadly representative of typical undergraduate students. Accordingly, the samples of students selected for specific medical conditions or learning disabilities were excluded. Finally, in the case of studies that used repeated administration of the same test, we used the first administration only.

Search for relevant studies

Figure 7 shows the PRISMA flowchart describing the search and selection of relevant undergraduate student samples. First, the APA PsycInfo, ERIC, and MEDLINE databases were searched concurrently from the earliest available date to the end of December 31, 2022. Using the "Find all my search terms", "apply equivalent subjects" tool, and search "All text". The terms searched were: (a) WAIS OR "Wechsler Adult" OR (Wechsler AND Bellevue), (b) university OR college OR undergraduate*, and (c) student*. Next, the three search results were combined with AND. The search identified 1,666 potentially relevant articles, chapters, dissertations, and other reports. The full text of all these potentially relevant articles was examined and 84 data sets meeting inclusion and exclusion criteria were identified. Second, the full text of all referenced articles listed in Table 2 of Sparks and Lovett (2009) was examined, and seven additional data sets meeting inclusion and exclusion criteria were identified. Third, the full text of references located in all relevant articles and book chapters, retrieved by any method, were examined, and
an additional 15 data sets meeting inclusion and exclusion criteria were identified. In total, the search yielded 106 samples meeting the inclusion and exclusion criteria.

Recorded variables and statistical analyses

For each study, we coded author, year of publication, publication type (e.g., journal, dissertation, report), country, university affiliation, year(s) participants were tested, the university the participants were from, Wechsler test version, number of participants, number of males and females, mean age, and means and standard deviations for intelligence scale and index scores (FSIQ, VIQ, PIQ, VCI, PRI, WMI, PSI).

If a study did not report FSIQ, the FSIQ was estimated from VIQ or VCI using regression imputation methods (see below). To obtain FSIQ adjusted for the Flynn Effect, 0.3 IQ points/year were substracted from reported FSIQ for each year that elapsed between the standardization year and the year of testing examinees in each sample. The standardization years used for Wechsler test versions were as follows: 1938 for WBIS (Wechsler, 1939), 1954 for WAIS (Wechsler, 1955), 1980 for WAIS-R (Wechsler, 1981), 1996 for WAIS-III (Wechsler, 1997), and 2007 for WAIS-IV (Wechsler, 2008). If the year of testing was not reported, it was estimated by subtracting two years from the publication year. If the year of testing was reported as a range of years, the midpoint of the range was taken as the estimated year of testing.

All statistical analyses were conducted using R statistical software (R Core Team, 2021) including the metafor package (Viechtbauer, 2010).

Results

The meta-analysis included 106 samples of undergraduate students representing 9,902 students in total, with the following number of students tested in each ten year period: 1,486 in 1939-1949; 1,462 in 1950-1959; 1,938 in 1960-1969; 635 in 1970-1979, 1,848 in 1980-1989; 1,025 in 1990-1999, 1,083 in 2000-2009, and 425 in 2010-2019. There were 102 samples from the USA and four samples from Canada. The meta-analysis included 18 WBIS samples, 28 WAIS samples, 40 WAIS-R samples, 17 WAIS-III samples, and 3 WAIS-IV samples. FSIQ was reported for 100 out of 106 samples and was estimated from VIQ for 5 samples and from VCI for 1 sample by regression imputation methods. The correlation between FSIQ and VIQ means was $r(63)=.974$, and FSIQ for the five samples was estimated using the equation: FSIQ = 4.967 +.963 * VIQ. The correlation between FSIQ and VCI means was $r(3)=.981$, and the FSIQ for one sample was estimated using the equation: FSIQ $=25.185+.772 * \mathrm{VCI}$ (note that VCI was rarely reported).

Table 3 shows descriptive information for each of the 106 undergraduate student samples. The table includes the first author, publication year, affiliation of the first author or university from which each sample was drawn, estimated year of WAIS test administration, estimated median SAT of admitted students in 2021, Wechsler test version, number of students, VIQ mean, VCI mean, FSIQ mean and standard deviation, FSIQ mean and standard deviations with imputations to replace missing values (see above), and Flynn Effect adjusted FSIQ.

Our systematic review identified only four Canadian samples among 106 samples in total, one tested with WBIS and three tested with WAIS-R. Accordingly, our main analyses include

460
only US samples. However, we also present key meta-regression results for the full 106 US and Canadian samples as WBIS and WAIS-R did not have separate norms for Canadian population. As expected, given only four Canadian samples, the results do not change in any substantive way.

Figure 8 shows the mean undergraduate students’ FSIQ plotted against the estimated year of testing ($k=102$), for US samples only, with the size of each bubble indicating the sample size. The Figure shows a steep decline in undergraduate students' FSIQ since the publication of the first Wechsler test, WBIS, in 1939. The figure includes a meta-regression line with 95\% CI bands. The meta-regression was estimated using random effect restricted maximum likelihood estimator ("REML"option in metafor). The estimated FSIQ = 456.658-. 173 * year of testing, with corresponding $R^{2}=.216$. The moderator test for year of testing was statistically significant, $Q M(d f=1)=27.103, p<.0001$. When both Canadian and US samples were included ($\mathrm{k}=106$), the estimated FSIQ $=475.431-.183 *$ year of testing, with corresponding $R^{2}=.236$. The moderator test for year of testing was statistically significant, $Q M(d f=1)=31.36, p<.0001$.

Figure 9 shows the same data but with FSIQs adjusted for the Flynn Effect, for US samples only. Again, the figure shows a steep decline in undergraduate students' FSIQ. The metaregression was estimated using random effect restricted maximum likelihood estimator ("REML"option in metafor). The estimated FSIQ $=490.742-.192 *$ year of testing with corresponding $R^{2}=.242$. The moderator test for year of testing was statistically significant, $Q M(d f=1)=31.30, \mathrm{p}<.0001$. When both Canadian and US samples were included ($\mathrm{k}=106$), the estimated FSIQ $=509.166-.202 *$ year of testing, with corresponding $R^{2}=.261$. The moderator test for year of testing was statistically significant, $Q M(d f=1)=35.85, p<.0001$.

Figure 10 compares the Wechsler normative samples IQ data in Table 2 with the undergraduate students' IQs estimated from the current study. It shows FSIQs reported for WAIS normative samples with 16+ years of education and with 13-15 years of education and FSIQs adjusted for the Flynn Effect of undergraduate student samples derived from the current study. The figure highlights that, on average, undergraduate students' FSIQs are merely average, and that the vast majority of both undergraduate students, as well as all adults with at least 16 years of education, have merely average FSIQs.

Finally, we examined the relationship between the estimated mean 2021 SAT scores (obtained from the IPEDS database) and the mean Wechsler IQ adjusted for the Flynn Effect. A simple correlation between the estimated SAT and Wechsler IQ adjusted for the Flynn Effect was moderate, $r(78)=.37, p<.001$. Using the estimated SAT as the $2^{\text {nd }}$ moderator in addition to the year of testing revealed that the estimated SAT explained an additional 6\% of the variability in the Wechsler IQs of the undergraduate samples. The estimated FSIQ $=421.280-0.171 *$ year of testing $+0.024 *$ SAT, with corresponding $R^{2}=.325$. The moderator test for year of testing and SAT was statistically significant, $Q M(d f=2)=37.91, p<.0001$. These SAT results have to be interpreted with caution, however, as the SAT data were available for only 80 out of the 106 samples, the SAT data are based on 2021 SATs of admitted students, and the SAT data do not reflect the SAT of all admitted students but only those who chose to submit them.

Discussion

The belief that on average, undergraduate students are brilliant is a myth. In the introduction, we tracked down the origin of this myth to uncritical repetition of decades old obsolete data and claims about undergraduate students’ IQ being 115 to 130 while ignoring Flynn

Effect; demonstrated that analyses of successive Wechsler normative samples revealed declines in IQ down to an average range; and reviewed massive increases in educational attainment over the last 80 years that made declines in undergraduate students IQ mathematically inevitable. Our meta-analysis provides further compelling evidence of the decline and demonstrates that the belief that, on average, undergraduate students are brilliant is a myth.

Wechsler tests are designed to describe US and/or Canadian population, that is, the normative populations are the same but those normative populations and samples are changing as time goes by. IQ scores describe where a particular examinee or a particular group (in case of mean IQ scores) lies relative to the mean of the standardization sample (100) in terms of the standard deviation (15). Successive versions of Wechsler tests are highly correlated, indicating that they measure largely the same thing. In fact, these intercorrelations are among the highest one one can find in psychological research (0.88 to .94), although not perfect, not 1.00 (Wechsler, 1981, 2008, 1997). However, a wealth of research has shown that later Wechsler tests are harder than earlier tests, that the scores on one Wechsler test are not equivalent to scores on another Wechsler test, and that to compare IQ scores across successive Wechsler tests one must at minimum adjust the scores for Flynn Effect (approximately 0.3 IQ points per year).

Our new research highlights that not only are successive Wechsler test versions harder as normative populations overall ability increases but, as compositions of normative populations change with time, performance of subgroups of normative populations also changes across successive versions of Wechsler tests. Our independent study confirms declines in mean IQs of undergraduate students reported in analyses of successive normative samples of Wechsler tests and indicate that the declines have continued for a decade and a half following norming of the WAIS-IV (Wechsler, 2008), the last Wechsler test. Today's undergraduate students’ IQ is estimated to be mere 102 IQ points. On average, undergraduate students’ IQ is no longer extraordinary but merely average. We have also demonstrated that undergraduate students' mean IQs vary hugely across the institutions, depending on admission standards and the selectivity of institutions the students were attending (as measured by the 2021 SAT of admitted students). The mean IQs of student samples range from below 100 to over 120, consistent with huge variability in admission rates and median SAT scores of students admitted to various universities. Even though we were using only the most recent IPEDS data on selectivity and median SAT scores of admitted students, the median SATs of admitted students moderately correlated with IQs of undergraduate students' samples from these universities, $r(78)=.37$.

The decline in undergraduate students' mean IQs is an inevitable consequence of profound changes in educational attainment in the USA and Canada since 1939, since the publication of the WBIS (Wechsler, 1939), detailed in the introduction. Whereas only a small portion of the population of Canada and the USA ever finished high school, and only a few percent ever made it to university in 1939, almost every adult today completed high school, 60 to 70% of the population have some college or university education, and approximately 40% of adults have university degrees in USA and Canada. Accordingly, whereas the Flynn Effect describes increases in mean intelligence of successive generations corresponding to approximately 0.3 IQ points per year, our findings demonstrate that undergraduate students' mean IQ relative to general population have been declining approximately 0.2 IQ points per year, resulting in an absolute increase of only 0.1 IQ points per year for undergraduate student population.

Our findings have several far-reaching implications. First, professors today are no longer teaching students with mostly above-average IQs as they did in the 1950. Instead, they are
teaching students with mean IQs no different from 100, that is, the mean IQs of the general population. Furthermore, professors are also teaching students with a much wider range of abilities, specifically, IQs ranging from below 70 to above 130. In the 1950s, when the average undergraduate students' IQ was 115 to 120, only a relatively small proportion of undergraduate students had IQs below 100, whereas today, nearly half of undergraduate students have IQs below 100 -- the population mean. In turn, professors have been forced to reduce material covered, reduce academic standards, reduce students' workload, and inflate grades, degrading the value of undergraduate education (Uttl, 2023a). Not surprisingly, public trust in higher education has dropped to all times low with only 36% of American public in 2023 having confidence in higher education (Schermele, 2023). Our findings validate the views of many university professors that students are less smart, less well prepared, and work less, but yet the students themselves believe that they are, in fact, very smart and deserve the very top grades (CTV.ca News Staff, 2009; Douglas, 2009; Frank, 2022; Greenberger et al., 2008; Keener, 2020). University professors’ beliefs are also well supported in the literature. For example, students admit to studying far less than university calendars expect of them. Whereas students used to study 2-3 hours outside of the class time for each hour of class time back in 1950s, today, by their own account, students study only about one hour outside of the class time for each hour of class time (Babcock \& Marks, 2010; Fosnacht et al., 2018; Uttl, 2023a). Yet, if university grades reflect how smart students are, students are told by their professors that they are extraordinarily smart, smarter than students in the 1950s, since most awarded grades today are As (Rojstaczer \& Healy, 2010, 2012) and, according to university calendars and grading standards, A grades are for "superior performance", B grades are for "clearly above-average performance", and C grades are for "satisfactory" or average performance (Uttl, 2023a). The DFW grades (i.e., Fs, Ds, and Withdrawals) are now more rare (Uttl, 2023a). However, as has been pointed out, the A grades given to most students do not reflect students' superior achievement but reflect demands (a) to ensure students' satisfaction, (b) to achieve high student evaluation of teaching (SET) ratings, (c) to minimize DFW grades, and (d) to ensure high student retention (Stroebe, 2016, 2020; Uttl, 2021; Uttl et al., 2017).

Second, employers can no longer expect employment applicants with undergraduate degrees to have appreciably higher IQs and mental abilities than the general population. Undergraduate students are merely average, and university graduates have, on average, a few extra IQ points but are merely average. For employers, a university degree has been losing its value and prestige for quite some time simply because there is now an abundance of individuals with such degrees. Our data also indicates that holders of university degrees are no longer special in terms of intelligence and cognitive ability as they used to be in the 1940s or 1950s. With diminishing value of undergraduate degrees, some employers allow applicants to take a quick multiple choice intelligence tests in lieu of a university degree requirement. For example, Government of Canada, one of the largest employers in Canada, allows job applicants to take General Intelligence Test GIT-310, or its newer and shorter version, General Competency Test GCT2-314, "as an alternative to a university education requirement". To be counted as an alternative to a university education requirement, the applicant has to get 58 out of 90 multiple choice questions correct on GCT2-314 (Government of Canada, 2024a, 2024b). Many other employers have eliminated and plan to eliminate requirements for university degrees altogether (Desai, 2023)

Third, students who are enrolled or who plan to enrol in higher education need to realize that acceptance into university is no longer an invitation into an elite group, that they will likely
be in classes with students with huge variability in IQ ranges, and that only some portion of the education offered will be adapted to their level of ability. These students need to know that to secure many jobs that required university degrees in the past they only need to pass, for example, a 90 item multiple choice intelligence tests, specific online course, or obtain sufficient relevant experience and skills (see above).

Fourth, various claims in scientific, clinical, and popular literature about IQs of undergraduate students and university graduates being in the above average range (detailed above), for example, between "113 and 120" (Gottfredson, 1997, 1988, 2002, 2003), are plainly wrong. These claims are nothing but myths and artifacts of improper and unwarranted reliance on obsolete data sets collected decades ago, ignorance of Flynn Effect, as well as, massive change in education over the last 100 years. This misinformation ought not to be propagated by mindlessly citing decades-old articles that themselves refer to further decades-old articles and obsolete data collected in the 1940s and 1950s.

Fifth, various methods of estimating premorbid IQs based on educational attainment are speculation and no longer evidence based as these estimates do not take into account (a) massive changes in educational attainment of populations, (b) large variability in mean IQs across institutions, (c) large variability of mean IQs across fields and subfields of study (as evidenced by SAT and GRE data detailed above), (d) large variability in IQs of individual students, and (e) Flynn effect. For example, a clinical psychologist who opines that a client's premorbid intelligence was clearly above average because the client (a) graduated from a Canadian public university in 2000 and (b) achieved above-average B-level grades while pursuing Bachelor's degree in Education is clearly uninformed, ignorant of essential facts, and not minimally competent to practice in this area. First, WAIS-III Canadian Edition normative data (collected in 1996) showed that Canadians with 16 or more years of education, on average, scored in the average range with the FSIQ of 108.7 and standard deviation of 14.3 (Longman et al., 2007). Second, students bound to pursue degrees in Education score below the average of all universitybound seniors on SAT and below the average of all students attempting GREs (see Figures 4 and 5). Third, B-grades are no longer "above-average grades" but merely average or below average grades due to a well known and widely publicized phenomenon of grade inflation (Rojstaczer \& Healy, 2010, 2012). Fourth, given the average FSIQ of 108.7 in 1996 and SD of 14.3, 95\% of Canadians with 16 or more years of education had FSIQs ranging from 80 to 137. In fact, Longman et al. (2007) give FSIQs of the WAIS-III normative sample for closely corresponding 2nd and 98th percentile as 78 and 142, respectively. Finally, the Flynn Effect and increases in educational attainment have continued and, as a result, the FSIQ of Canadians with 16 or more years of education was still lower in 2007, at the time WAIS-IV was normed, by another three or so IQ points, suggesting that the average WAIS-IV FSIQ of all Canadians with 16 or more years of education was only 105.7. In summary, if one wishes to speculate, the client's IQ was likely average, around 100 or even less, rather than being above average at the time she graduated with the Bachelor's degree in Education.

To obtain more reasonable estimate of examinees’ premorbid IQ, clinicians need to rely on individual assessment of examinees' IQ. First, clinicians may use SAT, ACT, GRE, and other standardized measures that are highly correlated with IQ, if such scores are available and if regression equations estimating IQ from these scores are available (Collins, 1999). Second, clinicians may use various reading based and other literacy measures to estimate pre-morbid intelligence (Kirton et al., 2020; Manly et al., 2004). However, in both of these approaches, if a
regression equation estimating IQ was developed for an earlier version of Wechsler test, clinicians still need to adjust the estimate for the Flynn Effect and be cognizant of the limitations of such adjustments (Kirton et al., 2020).

Sixth, education adjusted norms such as Advanced Clinical Solutions (Wechsler, 2009) norms available for WAIS-IV and Wechsler Memory Scale IV (US) are similarly mere speculations and not evidence-based for the very same reasons; the demographic adjustment for education attainment does not take into account (a) massive variability in the mean IQ of students graduating from different universities, (b) large variability of mean IQs across different fields and subfields of study, (c) large variability in IQs of individual students, (d) the Flynn effect and the resulting norms obsolescence, and (e) rapid changes in educational attainment. In fact, the use of these demographically-adjusted norms is unwarranted, wrong, and unethical; the norms attempt to adjust for the relatively small differences in IQ associated with educational attainment but ignore much larger differences in IQ between universities, fields of study, individuals, and generations.

Finally, and critically, our research highlights what should be obvious to any informed person: obsolete IQ data ought not to be used, ever, to make high-stakes decisions about individuals, for example, by clinical psychologists, employers, vocational counsellors, or government agencies. Unfortunately, at least some psychologists, employers, vocational counsellors, and even government agencies did not yet get the message, did not read WAIS test manuals, and are unaware of trends in higher education. In particular, they appear unaware of the Flynn Effect and of rapid changes in educational attainment and education in general. For example, recently three clinical psychologists, Dr. W, S, and M, all registrants of the College of Alberta Psychologists (www.cap.ca), used Gottfredson (1997, 1998, 2002, 2003) articles, Wonderlic (1992) WAIS (Wechsler, 1955) IQ data, the Schmidt and Hunter (2004) article that republished intelligence data on some teachers -- specifically White, enlisted men in US Army Air Force at the time of World War II originally published by Harrell and Harrell (1945), and the USES GATB data from 1950s (US DOL, 1970) -- to argue that an elementary school teacher, Ms. T, with twice assessed average IQ on WAIS-IV Canadian Edition (Wechsler, 2008) was so low as to be more than " 2 standard deviations below the average requirement for teachers", etc. (see Tables 5 for excerpts from Dr. W's expert report). Dr. W and S' reports were filed as expert reports in an ongoing human rights proceedings resulting from Ms. T's removal from the classroom in 2010 and subsequent dismissal from her employment in 2016 on the grounds that her twice assessed average intelligence and cognitive abilities prevented Ms. T from performing her teaching duties (Uttl, 2023c). Ms. T’s employer has been explicitly relying on Dr. W and S's opinions in an attempt to justify her removal from the classroom and the dismissal.

Dr. W, S, and M's statements and opinions ignore that the data to which they compared Ms. T's WAIS-IV Canadian Edition IQ scores were (a) astonishingly obsolete, (b) not representative of elementary school teachers in the USA or Canada 50 to 70 years ago nor today, and (c) collected in a historical era that had little resemblance to today. Similarly, Drs. W, S, and M never mentioned the existence of the Flynn Effect and, if one desired to speculate, the resulting need to adjust the obsolete data for 0.3 IQ points per year. In addition, they never mentioned the massive changes in educational attainment of US and Canadian populations over the last 100 years resulting in university students having merely average rather than above average mean IQ. None of the three clinical psychologists even mentioned that WAIS-III and WAIS-IV normative data already showed that university students and university graduates (individuals with 16+ years
of education) had average IQs well below 110. If one wanted to speculate, adjusted for the Flynn Effect, Gottfredson’s (2003) WAIS FSIQ of 112 corresponds to WAIS-IV FSIQ 96.1, and Schmidt and Hunter's (2004) CGT of 122.8 corresponds to a WAIS-IV FSIQ of 98.2. If one took the average of those two estimates, the teacher samples upon which Drs. W, S and M relied on would score, on average, a mere 97.1 on WAIS-IV. In turn, Ms. T's WAIS-IV FSIQ scores of 86 (obtained while Ms. T was physically unwell, vomiting, being distracted by noise from adjacent room, etc) and 91 (while in more reasonable testing circumstances) are well within the centre of the distribution of these teachers as well as within the average range of WAIS-IV Canadian Edition standardization sample. These examples highlight an astonishing level of ignorance of changes that have occurred during the last 100 years, and a complete failure to examine test manuals among at least some registered clinical psychologists, including those who present themselves as experts on these matters during legal proceedings.

Moreover, it is simply inappropriate to directly compare examinees' IQ scores on one intelligence test to norms on some other intelligence test without some kind of equating procedures as well as recognition that estimates of examinees' IQ scores on different test than that actually administered to them will be imprecise and subject to substantial error. Intelligence tests, including different versions of Wechsler tests, use different items, different subtests/tasks, different normative samples, and are normed at different times. As detailed above, extensive prior research indicates that even for different versions of WAIS tests, one must at minimum adjust scores or norms for the Flynn Effect. Our study highlights that as a composition of general population changes one must also adjust for the population composition changes, for example, changes in educational attainment of population and resulting decline in undergraduate students’ average IQ. Moreover, other changes in society may substantially alter performance on intelligence tests depending on specific composition of such tests. For example, an introduction of calculators and changes in school curricular de-emphasizing procedural skills and arithmetic fluency resulted substantial decline in arithmetic fluency (LeFevre et al., 2014). Not surprisingly, Canadian university students in 1995 scored one half of standard deviation below the mean of Canadian General Working Population on Numerical Aptitude of General Aptitude Test Battery Canadian Edition (Nelson, 1986) normed only ten years prior, in 1985 (Yeasting, 1996).

Our study has several limitations. We were able to locate only four WAIS Canadian samples, and thus, were unable to examine declines in undergraduate students' IQ in Canadian population. However, given similar massive increases in educational attainment in USA and Canada over the last 80 years, the declines in undergraduate students' IQ in USA and Canada are likely to be comparable. If anything, we expect Canadian undergraduate students' IQ to be slightly lower than that of US undergraduate students because Longman et al. (2007) showed that associations between WAIS-III FSIQ and education attainment were much smaller in Canadian than US population (see Table 4). Thus, Canadian undergraduate students’ IQ, using Canadian norms, is likely to be only about 100 or 101 IQ points in 2022. Using Shipley-2, Uttl (2023b) reported that a sample of undergraduate students tested in a large undergraduate Canadian university was only 103 using Shipley-2 US norms gathered in 2008. However, if Shipley-2 was normed on Canadian population in 2022, the mean IQ of these students would be lower given the Flynn Effect, smaller association between IQ and education in Canadian population, and Canadians having slightly higher IQ scores using US vs. Canadian norms.

Our analyzes are limited to Wechsler adult intelligence tests only. However, Uttl (2023b) reported that similar declines are observed on at least two other intelligence tests: Wonderlic

728

Personnel Test (WPT) (Wonderlic, 1992) and Shipley-2 (Shipley, 2009). Wonderlic (1992) reported that WPT raw scores of undergraduate students and university graduates declined substantially between 1970 to 1992 down to an average range. A recent meta-analysis of undergraduate students' WPT scores reported in the literature confirmed these declines and showed that they continued beyond 1992 and that in 2022 undergraduate students scored on average only 22 points on WPT, corresponding to approximately 102 IQ points on IQ scale (Uttl, 2023). Similarly, Shipley (2009) reported that IQ of undergraduate students and holders of undergraduate degrees declined to average range already in 2008, 15 years ago, the time Shipley2 was normed. Shipley (2009) wrote: "adults with less than a high school education... tended to have scores about 3 to 6 standard score points below the mean of 100 [94-97]", "adults with a high school diploma... were found to have scores ranging from 1 to 3 points below the mean [97 to 99]", "adults who attended some college... had scores right around the mean [99-101]" and "Individuals who had a college degree... had mean scores 3 to 7 points above the mean of 100 [103-107]" (p. 51). As detailed above, Uttl (2023b) reported that Canadian undergraduate students scored only 103 IQ points on Shipley-2 in 2022.

Finally, SAT and ACT data detailed in the introduction are not comprehensive as not all students choose to submit SAT and/or ACT scores and not all students are in fact required to submit SAT and/or ACT scores. Nevertheless, SAT and ACT data are very strongly correlated and both SAT and ACT data are substantially correlated with institutional admission rates and selectivity. In turn, this suggests that both SAT and ACT data are likely representative of all admitted students.

Conclusions

The average IQ of undergraduate students today is a mere 102 IQ points; undergraduate students are no longer extraordinary but merely average and no different from the general population IQ ($M=100, S D=15$). From 1939 to 2022, undergraduate students' IQ declined by approximately 0.2 IQ points per year relative to general population. The students' average IQ also varies substantially across universities and is correlated with estimated average SAT scores of admitted students or selectivity of universities, even though the SAT and IQ data were collected at different time periods and using different samples from each institution. The decline in undergraduate students' IQ is necessary consequence of college and university education becoming a new norm rather than the privilege of a few. In fact, graduating from university is now more common than completing high school in the 1940s or 1950s. These findings have wide-ranging implications. First, universities and professors need to realize that students are no longer extraordinary but merely average and of a wide range of abilities. Second, employers can no longer rely on job applicants with university degrees to be more capable or smarter than those without university degrees. Third, students need to realize that acceptance into university is no longer an invitation to join an elite group. Fourth, various claims in scientific, clinical and popular literature promoting the myth of extraordinarily smart undergraduate students based on obsolete data need to be promptly corrected to reflect a new reality. Fifth, various methods of estimating premorbid IQs based on educational attainment are vastly inaccurate, obsolete, no
longer evidence based, and ought to be abandoned. Sixth, obsolete IQ data or tests should never be used, ever, to make high-stakes decisions about individuals by clinical psychologists, employers, vocational counsellors, or government agencies. As has been argued before, a failure to adjust obsolete test scores or norms for the Flynn Effect is unscientific, unethical, incompetent, scandalous and malpractice (see above). We agree with Reynolds et al. that "No one’s life should depend on when an IQ test was normed" and we also believe that no one's career and livelihood should depend on the opinions of experts who opine about their clients' job competence based on 80 years obsolete intelligence test data uncorrected for the Flynn Effect and collected in a historical era bearing little resemblance to today.

References

Aaron, P. G., Olsen, J., \& Baker, C. (1985). The dyslexic college student: Is he also dysphasic? Cognitive Neuropsychology, 2(2), Article 2. https://doi.org/10.1080/02643298508252863

Abell, S. C., Heiberger, A. M., \& Johnson, J. E. (1994). Cognitive evaluations of young adults by means of human figure drawings: An empirical investigation of two methods. Journal of Clinical Psychology, 50(6), Article 6. https://doi.org/10.1002/1097-4679(199411)50:6<900::AID-JCLP2270500614>3.0.CO;2-3

Acklin, M. W., \& Fechner-Bates, S. (1989). Rorschach developmental quality and intelligence factors. Journal of Personality Assessment, 53(3), Article 3. https://doi.org/10.1207/s15327752jpa5303_10

Advokat, C., Martino, L., Hill, B. D., \& Gouvier, W. (2007). Continuous Performance Test (CPT) of College Students With ADHD, Psychiatric Disorders, Cognitive Deficits, or No Diagnosis. Journal of Attention Disorders, 10(3), Article 3. https://doi.org/10.1177/1087054706292106

Allen, J., Blanton, P., Johnson-Greene, D., Murphy-Farmer, C., \& Gross, A. (1992). Need for Achievement and Performance on Measures of Behavioral Fluency. Psychological Reports, 71(2), Article 2. https://doi.org/10.2466/pr0.1992.71.2.471

Allen, R. M., Thornton, T. E., \& Stenger, C. A. (1954). Ammons and Wechsler test performances of college and psychiatric subjects. Journal of Clinical Psychology, 10, 378-381. https://doi.org/10.1002/1097-4679(195410)10:4<378::AID-JCLP2270100417>3.0.CO;2E

Anastasi, A. (1965). Differential psychology (3rd ed.). Wiley.

Anderson, E. E. (1942). Wilson College studies in psychology I: A comparison of the WechslerBellevue, revised Stanford-Binet, and American Council on Education tests at the college level. Journal of Psychology, 14, 317-326.

Axelrod, B. N., Brines, B., \& Rapport, L. J. (1997). Estimating full scale IQ while minimizing the effects of practice. Assessment, 4(3), Article 3. https://doi.org/10.1177/107319119700400302

Baade, L. E., \& Schoenberg, M. R. (2004). A proposed method to estimate premorbid intelligence utilizing group achievement measures from school records. Archives of Clinical Neuropsychology, 19(2), 227-243. https://doi.org/10.1016/S0887-6177(03)00092-1

Babcock, P. S., \& Marks, M. (2010). The Falling Time Cost of College: Evidence from Half a Century of Time Use Data (Working Paper 15954; Working Paper Series, Issue 15954). National Bureau of Economic Research. https://doi.org/10.3386/w15954

Bass, B. A., \& Levkulic, P. G. (1985). Effects of Verbal Reinforcements upon WAIS Scores of Examinees High and Low in Anxiety. Psychological Reports, 56(1), Article 1. https://doi.org/10.2466/pr0.1985.56.1.261

Beaujean, A. A., Knoop, A., \& Holliday, G. (2006). Does chronometry have a place in assessing math disorders? Learning Disability Quarterly, 29(1), Article 1. https://doi.org/10.2307/30035530

Beers, S. R., Goldstein, G., \& Katz, L. J. (1994). Neuropsychological differences between college students with learning disabilities and those with mild head injury. Journal of Learning Disabilities, 27(5), Article 5. https://doi.org/10.1177/002221949402700508

Beglinger, L. J., Smith, T., \& Gregory, R. J. (2000). Young and elderly adults' perceptions of the Wechsler Adult Intelligence Scale—Revised. Journal of Clinical Psychology, 56(6), Article 6. https://doi.org/10.1002/(SICI)1097-4679(200006)56:6<821::AID-JCLP11>3.0.CO;2-S

Bell, N. L., Lassiter, K. S., Matthews, T. D., \& Hutchinson, M. B. (2001). Comparison of the Peabody Picture Vocabulary Test—Third Edition and Wechsler Adult Intelligence Scale— Third Edition with university students. Journal of Clinical Psychology, 57(3), Article 3. https://doi.org/10.1002/jclp. 1024

Birch, S., \& Chase, C. (2004). Visual and Language Processing Deficits in Compensated and Uncompensated College Students with Dyslexia. Journal of Learning Disabilities, 37(5), Article 5. https://doi.org/10.1177/00222194040370050301

Birch, S. L. (2016). Prevalence and Profile of Phonological and Surface Subgroups in College Students With a History of Reading Disability. Journal of Learning Disabilities, 49(4), Article 4. https://doi.org/10.1177/0022219414554007

Bishop, E. G., Dickson, A. L., \& Allen, M. T. (1990). Psychometric intelligence and performance on selective reminding. Clinical Neuropsychologist, 4(2), Article 2. https://doi.org/10.1080/13854049008401507

Boer, D. P., \& Pugh, G. M. (1988). Canadian items for the WAIS--R information subtest. Canadian Journal of Behavioural Science / Revue Canadienne Des Sciences Du Comportement, 20(3), Article 3. https://doi.org/10.1037/h0079928

Buchsbaum, M. S., Haier, R. J., Sostek, A. J., Weingartner, H., Zahn, T. P., Siever, L. J., Murphy, D. L., \& Brody, L. (1985). Attention dysfunction and psychopathology in college men. Archives of General Psychiatry, 42(4), Article 4. https://doi.org/10.1001/archpsyc.1985.01790270044004

Burris, C. L. (1983). A comparison of the Wechsler Adult Intelligence Scale—Revised with the Peabody Picture Vocabulary Test—Revised. Western Kentucky University.

Calvin, A. D., Koons, P. B. Jr., Bingham, J. L., \& Fink, H. H. (1955). A further investigation of the relationship between manifest anxiety and intelligence. Journal of Consulting Psychology, 19(4), Article 4. https://doi.org/10.1037/h0045731

Cannon, R., Congedo, M., Lubar, J., \& Hutchens, T. (2009). Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. International Journal of Neuroscience, 119(3), Article 3. https://doi.org/10.1080/00207450802480325

Cannon, R., Lubar, J., Gerke, A., Thornton, K., Hutchens, T., \& McCammon, V. (2006). EEG Spectral-Power and Coherence: LORETA Neurofeedback Training in the Anterior Cingulate Gyrus. Journal of Neurotherapy, 10(1), Article 1. https://doi.org/10.1300/J184v10n01_02

Carson, S. H., Peterson, J. B., \& Higgins, D. M. (2005). Reliability, Validity, and Factor Structure of the Creative Achievement Questionnaire. Creativity Research Journal, 17(1), Article 1. https://doi.org/10.1207/s15326934crj1701_4

Carvajal, H., Gerber, J., Hewes, P., \& Weaver, K. A. (1987). Correlations between Scores on Stanford-Binet IV and Wechsler Adult Intelligence Scale—Revised. Psychological Reports, 61(1), Article 1. https://doi.org/10.2466/pr0.1987.61.1.83

Carvajal, H., Kixmiller, J., Knapp, M., \& Vitt, J. (1991). The use of the PPST and intelligence tests in teacher education programs. Bulletin of the Psychonomic Society, 29(3), Article 3. https://doi.org/10.3758/BF03342675

Carvajal, H., Schrader, M. S., \& Holmes, C. B. (1996). Retest Reliability of the Wechsler Adult Intelligence Scale-Revised for 18- to 19-Year-Olds. Psychological Reports, 78(1), Article 1. https://doi.org/10.2466/pr0.1996.78.1.211

Chastain, R. L., \& Reynolds, C. R. (1984). An Analysis of WAIS-R Performance by Sample Stratification Variables Used during Standardization. https://eric.ed.gov/? q=revised\&pg=1129\&id=ED249409

Clifford, J. S., Boufal, M. M., \& Kurtz, J. E. (2004). Personality Traits and Critical Thinking Skills in College Students: Empirical Tests of a Two-Factor Theory. Assessment, 11(2), Article 2. https://doi.org/10.1177/1073191104263250

Cole, D., \& Weleba, L. (1956). Comparison data on the Wechsler-Bellevue and the WAIS. Journal of Clinical Psychology, 12, 198-199. https://doi.org/10.1002/1097-4679(195604)12:2<198::AID-JCLP2270120225>3.0.CO;2-K

College Board. (2021a). 2021 SAT Suite of Assessment Annual Report Total Group. https://reports.collegeboard.org/media/2022-04/2021-total-group-sat-suite-of-assessments-annual-report\ \(1\).pdf

College Board. (2021b). SAT Understanding Scores 2021. https://satsuite.collegeboard.org/media/pdf/understanding-sat-scores.pdf

Collins, L. F. (1999). Comparative validity of NART, NART-R, AMNART, WRAT-III reading, and act scores in predicting WAIS-III FSIQS: Implications for estimation of premorbid intelligence in adults (2000-95004-394; Issues 8-B) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login?url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=2000-95004-394\&site=ehostlive

Conry, R., \& Plant, W. T. (1965). WAIS and group test prediction of an academic success criterion: High school and college. Educational and Psychological Measurement, 25(2), Article 2. https://doi.org/10.1177/001316446502500218

Cosden, M. A., \& McNamara, J. (1997). Self-Concept and Perceived Social Support among College Students with and without Learning Disabilities. Learning Disability Quarterly, 20(1), Article 1. https://doi.org/10.2307/1511087

Coyle, T. R., \& Pillow, D. R. (2008). SAT and ACT Predict College GPA after Removing "g." Intelligence, 36(6), 719-729.

Crawford, M. S., \& Boer, D. P. (1985). Content bias in the WAIS-R Information subtest and some Canadian alternatives. Canadian Journal of Behavioural Science / Revue Canadienne Des Sciences Du Comportement, 17(1), 79-86.

Cronbach, L. J. (1960). Essentials of Psychological Testing (2nd edition). Harper.
CTV.ca News Staff. (2009). Profs say students lack maturity, feel entitled | CTV News. https://www.ctvnews.ca/profs-say-students-lack-maturity-feel-entitled-1.386965

Davis, A. S., Finch, W. H., Drapeau, C., Nogin, M., Moss, L. E., \& Moore, B. (2016). Predicting verbal fluency using Word Reading: Implications for premorbid functioning. Applied Neuropsychology: Adult, 23(6), Article 6. https://doi.org/10.1080/23279095.2016.1163262

Dennis, O. C. (1978). The relative efficiency of the Wechsler Adult Intelligence Scale (WAIS) as a predictor of college academic achievement. Western Kentucky University.

Desai, N. G. (2023, December 1). How the college degree lost its value: Nearly half of US companies plan to ax Bachelor's degree requirements—After Walmart, Accenture and IBM led the charge. Daily Mail. https://www.dailymail.co.uk/yourmoney/consumer/article-12806053/companies-ax-college-bachelors-degree-requirements-walmart.html

Detterman, D. K., Mayer, J. D., Caruso, D. R., Legree, P. J., Conners, F. A., \& Taylor, R. (1992). Assessment of basic cognitive abilities in relation to cognitive deficits. American Journal on Mental Retardation, 97(3), Article 3.

Dodd, R. M. (2022). The academic achievement and psychological functioning of college students with a family history of alcoholism [Ph.D., The University of North Dakota]. https://www.proquest.com/docview/304611605/abstract/C40803F92553423BPQ/1

Douglas, S. M. (2009). Mind over merit. Education Forum (Toronto. 1988), 35(3), 11-.

Ducheneaux, T., \& McDonald, J. D. (1999). Biculturalism and Native American College Students' Performance on the WAIS-III.

Dymond, R. F. (1950). Personality and empathy. Journal of Consulting Psychology, 14(5), Article 5. https://doi.org/10.1037/h0061674

Estes, S. G. (1946). Deviations of Wechsler-Bellevue subtest scores from vocabulary level in superior adults. The Journal of Abnormal and Social Psychology, 41(2), Article 2. https://doi.org/10.1037/h0059680

ETS. (2021). GRE Guide to the Use of Scores 2021-22. ETS. www.ets.org/gre/guide
Faber, K. (2021). A WAIS-IV validation study of the Altus information inventory (2021-50285062; Issues 10-B) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login? url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=2021-50285-062\&site=ehostlive

Feldman, S. E. (1968). Utility of Some Rapid Estimations of Intelligence in a College Population. Psychological Reports, 22(1), Article 1. https://doi.org/10.2466/pr0.1968.22.1.23

Fishbein, S. (1941). An evaluation of the Wechsler-Bellevue Intelligence tests for use on the college level [M.A.]. Temple University.

Fletcher, J. M., Stuebing, K. K., \& Hughes, L. C. (2010). IQ Scores Should Be Corrected for the Flynn Effect in High-Stakes Decisions. Journal of Psychoeducational Assessment, 28(5), 469-473. https://doi.org/10.1177/0734282910373341

Flynn, J. (2007). Capital offenders and the death sentence: A scandal that must be addressed. Psychology in Mental Retardation and Developmental Disabilities, 32(3).

Flynn, J. (1984). The mean IQ of Americans: Massive gains 1932 to 1978.

Fosnacht, K., McCormick, A. C., \& Lerma, R. (2018). First-Year Students’ Time Use in College: A Latent Profile Analysis. Research in Higher Education, 59(7), Article 7. https://doi.org/10.1007/s11162-018-9497-z

Frank, N. (2022, July 13). The Increase in Narcissism in College Students. Owlcation. https://owlcation.com/social-sciences/Increasing-Narcissism-in-College-Students

Frey, M. C. (2019). What We Know, Are Still Getting Wrong, and Have Yet to Learn about the Relationships among the SAT, Intelligence and Achievement. Journal of Intelligence, 7(4), 26-. https://doi.org/10.3390/jintelligence7040026

Frey, M. C., \& Detterman, D. K. (2004). Scholastic Assessment or g? The Relationship between the Scholastic Assessment Test and General Cognitive Ability. Psychological Science, 15(6), 373-378. https://doi.org/10.1111/j.0956-7976.2004.00687.x

Gajar, A., Salvia, J., Gajria, M., \& Salvia, S. (1989). A comparison of intelligence achievement discrepancies between learning disabled and non-learning disabled college students. Learning Disabilities Research, 4(2), Article 2.

Geiselman, R. E., MacKinnon, D. P., Fishman, D. L., Jaenicke, C., Larner, B. R., Schoenberg, S., \& Swartz, S. (1983). Mechanisms of hypnotic and nonhypnotic forgetting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), Article 4. https://doi.org/10.1037/0278-7393.9.4.626

Gerbeth, R. A. (1950). A study of the two forms of the Wechsler-Bellevue Intelligence Scale. Journal of Consulting Psychology, 14, 365-370.

Gooding, D. C., \& Braun, J. G. (2004). Visuoconstructive performance, implicit hemispatial inattention, and schizotypy. Schizophrenia Research, 68(2-3), Article 2-3. https://doi.org/10.1016/S0920-9964(03)00157-9

Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79-132. https://doi.org/10.1016/S0160-2896(97)90014-3

Gottfredson, L. S. (1998). The general intelligence factor. Scientific American, 9, 24-29.
Gottfredson, L. S. (2002). Where and Why g Matters:Not a Mystery. Human Performance, 15(12), 25-46. https://doi.org/10.1080/08959285.2002.9668082

Gottfredson, L. S. (2003). Chapter 15—G, Jobs and Life. In H. Nyborg (Ed.), The Scientific Study of General Intelligence (pp. 293-342). Pergamon. https://doi.org/10.1016/B978-008043793-4/50053-2

Government of Canada. (2024a). General Competency Test Level 2 (GCT2-314). Government of Canada. https://www.canada.ca/en/public-service-commission/services/staffing-assessment-tools-resources/human-resources-specialists-hiring-managers/human-resources-toolbox/personnel-psychology-centre/consultation-test-services/public-service-commission-tests/general-competency-test-level-2-gct2.html

Government of Canada. (2024b). General Intelligence Test (GIT-310). Government of Canada. https://www.canada.ca/en/public-service-commission/services/staffing-assessment-tools-resources/human-resources-specialists-hiring-managers/human-resources-toolbox/ personnel-psychology-centre/consultation-test-services/public-service-commission-tests/ general-intelligence-test-310-git-310.html

Greenberger, E., Lessard, J., Chen, C., \& Farruggia, S. P. (2008). Self-Entitled College Students: Contributions of Personality, Parenting, and Motivational Factors. Journal of Youth and Adolescence, 37(10), 1193-1204. https://doi.org/10.1007/s10964-008-9284-9

Gregg, N., Bandalos, D. L., Coleman, C., Davis, J. M., Robinson, K., \& Blake, J. (2008). The validity of a battery of phonemic and orthographic awareness tasks for adults with and without dyslexia and Attention Deficit/Hyperactivity Disorder. Remedial and Special Education, 29(3), Article 3. https://doi.org/10.1177/0741932508315951

Gregg, N., Hoy, C., Flaherty, D. A., Norris, P., Coleman, C., Davis, M., \& Jordan, M. (2005). Decoding and Spelling Accommodations for Postsecondary Students with Dyslexia—It's More Than Processing Speed. Learning Disabilities, 18.

Gresham, F. M., \& Reschly, D. J. (2011). Standard of Practice and Flynn Effect Testimony in Death Penalty Cases. Intellectual and Developmental Disabilities, 49(3), 131-140. https://doi.org/10.1352/1934-9556-49.3.131

Hanna, G. S., House, B., \& Salisbury, L. H. (1968). WAIS performance of Alaskan Native university freshmen. The Journal of Genetic Psychology: Research and Theory on Human Development, 112(1), Article 1.

Harrell, M., Myers, M., Aita, S., Taylor, S., Beach, J., Calamia, M., \& Hill, B. (2020). Mittenberg-type formula for identifying feigned ADHD using WAIS-IV. Archives of Clinical Neuropsychology, 35, 1001.

Harrell, T. W., \& Harrell, M. S. (1945). Army General Classification Test scores for civilian occupations. Educational and Psychological Measurement, 5, 229-239. https://doi.org/10.1177/001316444500500303

Harwood, B. T. (1967). Some intellectual correlates of schizoid indicators: WAIS and MMPI. Journal of Consulting Psychology, 31(2), Article 2. https://doi.org/10.1037/h0024420

Heaton, R. K., Manly, J. J., Taylor, M. J., \& Tulsky, D. S. (2001). Association between demographic characteristics on WAIS-III and WMS-III.

Henderson, R. (2019, March 17). 5 seriously stunning facts about higher education in America. Psychology Today. https://www.psychologytoday.com/us/blog/after-service/201903/5-seriously-stunning-facts-about-higher-education-in-america

Holdnack, J. A., \& Weiss, L. G. (2013). Chapter 4—Demographic Adjustments to WAIS-IV/WMS-IV Norms. In J. A. Holdnack, L. W. Drozdick, L. G. Weiss, \& G. L.

Iverson (Eds.), WAIS-IV, WMS-IV, and ACS (pp. 171-216). Academic Press. https://doi.org/10.1016/B978-0-12-386934-0.00004-3

Hopper, B. C. (2000). Examining the concurrent and predictive validity of nonverbal tests of intelligence [M.A.]. George Fox University.

Ickes, C. S. (1992). A comparison of the WAIS—R and the MAB in a college population (1993-71299-001; Issues 12-A) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login?url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=1993-71299-001\&site=ehostlive

Jensen, A. (1980). Bias In Mental Testing (First Printing edition). Free Press.
Kaufman, A. S., \& Lichtenberger, E. O. (2005). Assessing Adolescent and Adult Intelligence, Third Edition (3rd edition). Wiley.

Keener, A. (2020). An examination of psychological characteristics and their relationship to academic entitlement among millennial and nonmillennial college students. Psychology in the Schools, 57(4), 572-582. https://doi.org/10.1002/pits. 22338

Kelley, M. P., \& Coursey, R. D. (1992). Lateral preference and neuropsychological correlates of schizotypy. Psychiatry Research, 41(2), Article 2. https://doi.org/10.1016/0165-1781(92)90104-B

Kirton, J. W., Soble, J. R., Marceaux, J. C., Messerly, J., Bain, K. M., Webber, T. A., Fullen, C., Alverson, W. A., \& McCoy, K. J. M. (2020). Comparison of Models of Premorbid IQ Estimation Using the TOPF, OPIE-3, and Barona Equation, With Corrections for the Flynn Effect. Neuropsychology, 34(1), 43-52. https://doi.org/10.1037/neu0000569

Koenig, K. A., Frey, M. C., \& Detterman, D. K. (2008). ACT and general cognitive ability. Intelligence (Norwood), 36(2), 153-160. https://doi.org/10.1016/j.intell.2007.03.005

Kramar, E. J. (1955). The relationships of the Wechsler-Bellevue and A. C. E. intelligence tests with performance scores in speaking and the Brown-Carlsen Listening Comprehension Test [Ph.D.]. The Florida State University.

Ladd, A. H. (1950). The differential predictive value of the Wechsler-Bellevue Scale for certain area of teacher preparation [D.Ed.]. Indiana University.

Lassiter, K. S., Bell, N. L., Hutchinson, M. B., \& Matthews, T. D. (2001). College student performance on the General Ability Measure for Adults and the Wechsler Intelligence Scale for Adults—Third Edition. Psychology in the Schools, 38(1), Article 1. https://doi.org/10.1002/1520-6807(200101)38:1<1::AID-PITS1>3.0.CO;2-M

LeFevre, J.-A., Penner-Wilger, M., Pyke, A. A., Shanahan, T., \& Deslauriers, W. A. (2014). Putting two and two together: Declines in arithmetic fluency among young Canadian adults, 1993 to 2005 (Carleton University Cognitive Science Technical Report 2014-01). Carleton University.

Lewis, M. L., \& Johnson, J. J. (1985). Comparison of WAIS and WAIS—R IQs from two equivalent college populations. Journal of Psychoeducational Assessment, 3(1), Article 1. https://doi.org/10.1177/073428298500300106

Lezak, M. D., Howieson, D. B., Bigler, E. D., \& Tranel, D. (2012). Neuropsychological Assessment (5th edition). Oxford University Press.

Longman, R. S., Saklofske, D. H., \& Fung, T. S. (2007). WAIS-III percentile scores by education and sex for U.S. and Canadian populations. Assessment, 14(4), 426-432. https://doi.org/10.1177/1073191107304114

Lott, W. J. (1952). Characteristics of high standing university students on the Wechsler Bellevue Adult Intelligence Scale [M.A.]. University of Alberta.

Manly, J. J., Byrd, D., Touradji, P., Sanchez, D., \& Stern, Y. (2004). Literacy and cognitive change among ethnically diverse elders. International Journal of Psychology, 39(1), 4760. https://doi.org/10.1080/00207590344000286

Matarazzo, J. D. (1972). Wechsler's Measurement and Appraisal of Adult Intelligence (5th edition). Oxford University Press.

McGee, S., \& Brown, C. (1984). A split in the verbal comprehension factor in WAIS and WISCR profiles. Journal of Clinical Psychology, 40(2), Article 2. https://doi.org/10.1002/1097-4679(198403)40:2<580::AID-JCLP2270400233>3.0.CO;2-1

Mefferd, R. B. (1979). Word Association: Verbal Intelligence. Psychological Reports, 44(3), Article 3. https://doi.org/10.2466/pr0.1979.44.3.919

Menary, E. L. (1985). A study of the relationships between reading and personality and WAIS scales at an open door community college (1986-52242-001; Issues 5-A) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login?url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=1986-52242-001\&site=ehostlive

Merrill, R. M., \& Heathers, L. B. (1952). Centile scores for the Wechsler-Bellevue Intelligence Scale on a university counseling center group. Journal of Consulting Psychology, 16(5), Article 5. https://doi.org/10.1037/h0057553

Merrill, R. M., \& Heathers, L. B. (1953). A comparison of the Wechsler-Bellevue and ACE tests on a university counseling center group. Journal of Consulting Psychology, 17(1), Article 1. https://doi.org/10.1037/h0060097

Mishra, S. P. (1982). Intelligence Test Performance as Affected by Anxiety and Test Administration Procedures. Journal of Clinical Psychology, 38(4), 825-829.

Morgan, A. W., Sullivan, S. A., Darden, C., \& Gregg, N. (1997). Measuring the intelligence of college students with learning disabilities: A comparison of results obtained on the WAISR and the KAIT. Journal of Learning Disabilities, 30(5), Article 5. https://doi.org/10.1177/002221949703000512

Morris-Friehe, M., \& Leuenberger, J. (1992). Direct and indirect measures of writing for nonlearning disabled and learning disabled college students. Reading and Writing, 4(3), Article 3. https://doi.org/10.1007/BF01027152

Mosberg, L., \& Johns, D. (1994). Reading and listening comprehension in college students with developmental dyslexia. Learning Disabilities Research \& Practice, 9(3), Article 3.

Nelson. (1986). Manual for the General Aptitude Test Battery Canadian 1986 Edition. Nelson Canada.

Nobo, J., \& Evans, R. G. (1986). The WAIS—R Picture Arrangement and Comprehension subtests as measures of social behavior characteristics. Journal of Personality Assessment, 50(1), Article 1.

O’Hora, D., Peláez, M., Barnes-Holmes, D., Rae, G., Robinson, K., \& Chaudhary, T. (2008). Temporal relations and intelligence: Correlating relational performance with performance on the WAIS-III. The Psychological Record, 58(4), Article 4.

Olsen, I. A., \& Jordheim, G. D. (1964). Use of WAIS in a student counseling center. Personnel \& Guidance Journal, 42(5), Article 5. https://doi.org/10.1002/j.2164-4918.1964.tb04692.x

Ormrod, J. E. (1990). Comparing Good and Poor Spellers of Equal Reading and Verbal Abilities. Perceptual and Motor Skills, 71(2), Article 2. https://doi.org/10.2466/pms.1990.71.2.432

Paul, S. M. (1985). The Advanced Raven’s Progressive Matrices: Normative data for an American university population and an examination of the relationship with Spearman's g. Journal of Experimental Education, 54(2), Article 2. https://doi.org/10.1080/00220973.1986.10806404

Pilgrim, B. M. (2001). Examination of three short forms for the Wechsler Adult Intelligence Scale-III (2001-95002-144; Issues 7-B). ProQuest Information \& Learning.

Plant, W. T. (1958). Mental ability scores for freshmen in a California state college. California Journal of Educational Research, 9, 72-73.

Plant, W. T., \& Richardson, H. (1958). The IQ of the average college student. Journal of Counseling Psychology, 5(3), 229-231. https://doi.org/10.1037/h0040731

Quereshi, M. Y., \& Ostrowski, M. J. (1985). The comparability of three Wechsler adult intelligence scales in a college sample. Journal of Clinical Psychology, 41(3), Article 3. https://doi.org/10.1002/1097-4679(198505)41:3<397::AID-JCLP2270410316>3.0.CO;20

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rakusin, J. M. (1949). The analysis of scatter on the Wechsler-Bellevue Adult Intelligence Scale in a group of adjusted and a group of maladjusted college students [M.S.]. Pennsylvania State College.

Ratcliff, R., Thapar, A., \& McKoon, G. (2010). Individual differences, aging, and IQ in twochoice tasks. Cognitive Psychology, 60(3), Article 3. https://doi.org/10.1016/j.cogpsych.2009.09.001

Reynolds, C. R., Chastain, R. L., Kaufman, A. S., \& McLean, J. E. (1987). Demographic characteristics and IQ among adults: Analysis of the WAIS-R standardization sample as a function of the stratification variables. Journal of School Psychology, 25(4), 323-342. https://doi.org/10.1016/0022-4405(87)90035-5

Reynolds, C. R., Niland, J., Wright, J. E., \& Rosenn, M. (2010). Failure to Apply the Flynn Correction in Death Penalty Litigation: Standard Practice of Today Maybe, but Certainly

Malpractice of Tomorrow. Journal of Psychoeducational Assessment, 28(5), 477-481. https://doi.org/10.1177/0734282910373348

Rojstaczer, S., \& Healy, C. (2010). Grading in American Colleges and Universities. Teachers College Record.

Rojstaczer, S., \& Healy, C. (2012). Where A Is Ordinary: The Evolution of American College and University Grading, 1940-2009. Teachers College Record, 114(7), Article 7.

Rossini, E. D., Wygonik, E. J., Barrett, D. E., \& Friedman, B. (1994). WAIS-R validation of the Thurstone Test of Mental Alertness. Psychological Reports, 74(3, Pt 2), Article 3, Pt 2. https://doi.org/10.2466/pr0.1994.74.3c. 1339

Ruble, V. E. (1981). Wechsler Adult Intelligence Scale as a predictor of college success with high risk students (1982-50117-001; Issues 8-A) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login?url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=1982-50117-001\&site=ehostlive

Salvia, J., Gajar, A., Gajria, M., \& Salvia, S. (1988). A comparison of WAIS—R profiles of nondisabled college freshmen and college students with learning disabilities. Journal of Learning Disabilities, 21(10), Article 10. https://doi.org/10.1177/002221948802101008

Salvia, S. A., \& Salvia, J. (1986). Significant Discrepancies between the Wechsler Adult Intelligence Scale--Revised and the Woodcock-Johnson Psycho-Educational Battery, Part II: Tests of Achievement with a College Population. Diagnostique, 11(2), 59-68.

Sartain, A. Q. (1946). A comparison of the new Revised Stanford-Binet, the Bellevue Scale, and certain group tests of intelligence. Journal of Social Psychology, 23, 237-259.

Schermele, Z. (2023, July 11). Public trust in higher ed has plummeted. Yes, again. https://www.chronicle.com/article/public-trust-in-higher-ed-has-plummeted-yes-again

Schmidt, F. L., \& Hunter, J. (2004). General Mental Ability in the World of Work: Occupational Attainment and Job Performance. Journal of Personality and Social Psychology, 86(1), 162-173. https://doi.org/10.1037/0022-3514.86.1.162

Sedlacek, G. M. (1976). The Wechsler Adult Intelligence Scale and the Washington Pre-College Test battery as predictors of academic success (1978-11220-001; Issues 6-A) [ProQuest Information \& Learning]. http://libproxy.mtroyal.ca/login?url=https://search.ebscohost.com/login.aspx? direct=true\&AuthType=ip,url,cookie,uid\&db=psyh\&AN=1978-11220-001\&site=ehostlive

Shaw, D. J. (1965). Sexual bias in the WAIS. Journal of Consulting Psychology, 29(6), Article 6. https://doi.org/10.1037/h0022740

Sheckart, G. R., \& Bass, B. A. (1976). The effects of verbal and nonverbal contingent reinforcement upon the intelligence test performance of Black adults. Journal of Clinical Psychology, 32(4), Article 4. https://doi.org/10.1002/1097-4679(197610)32:4<826::AID-JCLP2270320420>3.0.CO;2-6

Sheldon, M. S., Coale, J. M., \& Copple, R. (1959). Concurrent validity of the "warm teacher scale." Journal of Educational Psychology, 50(1), Article 1. https://doi.org/10.1037/h0043771

Small, M. A., Raney, J. F., \& Knapp, T. J. (1987). Complex reaction time and general intelligence: A refinement. The Journal of Genetic Psychology: Research and Theory on Human Development, 148(4), Article 4. https://doi.org/10.1080/00221325.1987.10532480

Smith, R. S. (1983). A comparison study of the Wechsler Adult Intelligence Scale and the Wechsler Adult Intelligence Scale-Revised in a college population. Journal of Consulting and Clinical Psychology, 51(3), Article 3. https://doi.org/10.1037/0022-006X.51.3.414

Sorensen, M. A., \& Clifton, S. W. (1968). Client opinions of WAIS interpretations. Measurement \& Evaluation in Guidance, 1(3), Article 3.

Sparks, R. L., \& Lovett, B. J. (2009). Objective Criteria for Classification of Postsecondary Students as Learning Disabled: Effects on Prevalence Rates and Group Characteristics. Journal of Learning Disabilities, 42(3), Article 3.
https://doi.org/10.1177/0022219408331040
Steisel, I. M. (1951). The relation between test and retest scores on the Wechsler-Bellevue Scale (Form I) for selected college students. The Pedagogical Seminary and Journal of Genetic Psychology, 79, 155-162. https://doi.org/10.1080/08856559.1951.10533596

Storrs, S. V. (1952). Evaluative data on the G A T B. Personnel \& Guidance Journal, 31, 87-90. https://doi.org/10.1002/j.2164-4918.1952.tb01408.x

Stroebe, W. (2016). Why Good Teaching Evaluations May Reward Bad Teaching: On Grade Inflation and Other Unintended Consequences of Student Evaluations. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(6), Article 6. https://doi.org/10.1177/1745691616650284

Stroebe, W. (2020). Student Evaluations of Teaching Encourages Poor Teaching and Contributes to Grade Inflation: A Theoretical and Empirical Analysis. Basic and Applied Social Psychology, 42(4), Article 4. https://doi.org/10.1080/01973533.2020.1756817

Thompson, A., \& Plumridge, S. (1999). Two- and four-subtest short forms of the WAIS-R: A comparative validity study with a normal sample. Psychological Reports, 84(2), 371-380. https://doi.org/10.2466/PR0.84.2.371-380

Titus, J. B., Retzlaff, P. D., \& Dean, R. S. (2002). Predicting scores of the Halstead Category Test with the WAIS-III. International Journal of Neuroscience, 112(9), Article 9. https://doi.org/10.1080/00207450290026085

Trahan, L., Stuebing, K. K., Hiscock, M. K., \& Fletcher, J. M. (2014). The Flynn Effect: A Metaanalysis. Psychological Bulletin, 140(5), 1332-1360. https://doi.org/10.1037/a0037173

US Census. (2022). Table A-1. Years of School Completed by People 25 Years and Over, by Age and Sex, Selected Years 1940 to 2021. US Census Bureau. https://www2.census.gov/programs-surveys/demo/tables/educational-attainment/time-series/cps-historical-time-series/taba-1.xlsx

US DOL. (1970). Manual for the USES General Aptitude Test Battery Section III: Development. Manpower Administration Department of Labor.

Uttl, B. (2021). Lessons Learned from Research on Student Evaluation of Teaching in Higher Education. In W. Rollett, H. Bijlsma, \& S. Röhl (Eds.), Student Feedback on Teaching in Schools: Using Student Perceptions for the Development of Teaching and Teachers (pp. 237-256). Springer International Publishing. https://doi.org/10.1007/978-3-030-751500_15

Uttl, B. (2023a). Student Evaluation of Teaching (SET): Why the Emperor has no clothes and what we should do about it.

Uttl, B. (2023b, June). Average intelligence of university students is merely average and implications are wide-ranging [Talk]. Canadian Psychological Association, Toronto, ON.

Uttl, B. (2023c, June). Pronouncing opinions about clients based on obsolete data sets: Minimally competent practice, unprofessional conduct, and/or malpractice? [Conversation Session/Ethics Stream]. Canadian Psychological Association, Toronto, ON. https://sd5bc.info/wp-content/uploads/2023/08/Uttl-CPA-2023-EthicsObsoleteTests.pdf

Uttl, B., White, C. A., \& Gonzalez, D. W. (2017). Meta-analysis of faculty's teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Studies in Educational Evaluation, 54, 22-42. https://doi.org/10.1016/j.stueduc.2016.08.007

Verney, S. P., Granholm, E., Marshall, S. P., Malcarne, V. L., \& Saccuzzo, D. P. (2005). CultureFair Cognitive Ability Assessment: Information Processing and Psychophysiological Approaches. Assessment, 12(3), Article 3. https://doi.org/10.1177/1073191105276674

Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 36, 1-48. https://doi.org/10.18637/jss.v036.i03

Ward, T. B., Stagner, B. H., Scott, J. G., Marcus-Mendoza, S. T., \& Turner, D. (1989). Classification behavior and measures of intelligence: Dimensional identity versus overall similarity. Perception \& Psychophysics, 45(1), Article 1. https://doi.org/10.3758/BF03208035

Wechsler, D. (1939). The measurement of adult intelligence. Williams \& Wilkins.
Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale (pp. vi, 110). Psychological Corp.

Wechsler, D. (1981). Wechsler Adult Intelligence Scale-Revised. Psychological Corp.
Wechsler, D. (2008). WAIS-IV Technical and Interpretive Manual. Pearson.
Wechsler, D. (2009). Advanced Clinical Solutions for WAIS-IV and WMS-IV. Pearson.
Wechsler, D. (1997). Wechsler Adult Intelligence Scale: Third Edition—Technical Manual.
Weyandt, L. L., Mitzlaff, L., \& Thomas, L. (2002). The Relationship Between Intelligence and Performance on the Test of Variables of Attention (TOVA). Journal of Learning Disabilities, 35(2), Article 2. https://doi.org/10.1177/002221940203500203

Whitworth, R. H., \& Gibbons, R. T. (1986). Cross-racial comparison of the WAIS and WAIS—R. Educational and Psychological Measurement, 46(4), Article 4. https://doi.org/10.1177/001316448604600425

Wonderlic. (1992). Wonderlic Personnel Test and scholastic level exam user's manual. Wonderlic Personnel Test Inc.

Yeasting, K. C. (1996). Evaluation of the General Aptitude Test Battery-Computerized Administration (GATB-CA) [ProQuest Dissertations Publishing].
https://search.proquest.com/docview/304336731
Young, S. R., \& Keith, T. Z. (2020). An Examination of the Convergent Validity of the ICAR16 and WAIS-IV. Journal of Psychoeducational Assessment, 38(8), Article 8. https://doi.org/10.1177/0734282920943455

Acknowledgements

When this study was initiated and data collected, Victoria Violo and Lacey Gibson were at Psychology Department, Mount Royal University, Calgary, Alberta, Canada.

This research was funded by Natural Science and Engineering Research Council of Canada Discovery Grant to Bob Uttl. The funder had no role in study design, collection of data, analysis, interpretation, decision to publish, or preparation of the paper.

Preliminary results were presented at Canadian Psychological Association meeting in June 2022: Uttl, B., Violo, T, \& Gibson, L. (2022, June). Average university students' IQ is no longer above average but merely average. Canadian Psychological Association Conference (poster).
10.13140/RG.2.2.35858.22724

Table 1

VIQ/VCI, PIQ/PRI, and FSIQ scores of three samples, each tested with two successive versions of Wechsler Adult Intelligence Scales (US Editions).

	WAIS- IV	WAIS- III	Δ	WAIS-III	WAIS- R	Δ	WAIS-R	WAIS	Δ	Cumulative Δ
VIQ/VCI	100.1	102.8	-2.7	102.2	103.4	-1.2	101.8	108.7	-6.9	-10.8
PIQ/PRI	100.3	102.5	-2.2	103.5	108.3	-4.8	105.4	113.4	-8.0	-15.0
FSIQ	100.0	102.9	-2.9	102.9	105.8	-2.9	103.8	111.3	-7.5	-13.3

Note. Δ = the difference between the two means; WAIS-IV/WAIS-III sample: $N=240$, aged 1688 years (Wechsler, 2008, p. 75); WAIS-III/WAIS-R sample: $N=192$, aged 16-74 (Wechsler, 1997, p. 79); WAIS-R/WAIS: $N=72$, aged 35-44 (Wechsler, 1981, p. 47)

803
Table 2
804 Mean FSIQ (with SDs in parentheses) by years of education for WAIS-R, WAIS-III, and WAIS-
805 IV US Edition normative samples and WAIS-III CDN Edition normative samples.

WAIS	Year	0-7	8	$\begin{aligned} & 8 \text { or } \\ & \text { less } \end{aligned}$	9-11	12	13-15	16	17-18	> 18	16+
US Edition											
WAIS-R	1981	$\begin{gathered} 82.2 \\ (13.6) \\ n=133 \end{gathered}$	$\begin{gathered} 90.7 \\ (12.0) \\ \mathrm{n}=158 \end{gathered}$		$\begin{gathered} 96.4 \\ (14.3) \\ n=472 \end{gathered}$	100.1 (12.6) $\mathrm{n}=652$	$\begin{aligned} & 107.4 \\ & (11.1) \\ & \mathrm{n}=251 \end{aligned}$				115.3 (12.2) $\mathrm{n}=214$
WAIS-III	1997			$\begin{gathered} 85.8 \\ (15.1) \\ \mathrm{n}=284 \end{gathered}$	$\begin{gathered} 91.2 \\ (12.6) \\ \mathrm{n}=289 \end{gathered}$	99.2 (12.8) $\mathrm{n}=853$	$\begin{aligned} & 103.6 \\ & (12.3) \\ & \mathrm{n}=579 \end{aligned}$				111.6 (13.2) $\mathrm{n}=445$
WAIS-IV	2008			$\begin{gathered} 82 \\ (12.6) \\ \mathrm{n}=220 \end{gathered}$	$\begin{gathered} 86.4 \\ (13.8) \\ n=243 \end{gathered}$	$\begin{gathered} 96.2 \\ (13.7) \\ \mathrm{n}=647 \end{gathered}$	$\begin{aligned} & 101.4 \\ & (13.1) \\ & \mathrm{n}=553 \end{aligned}$	$\begin{aligned} & 107.1 \\ & (14.0) \\ & \mathrm{n}=267 \end{aligned}$	$\begin{aligned} & 107.1 \\ & (14.0) \\ & \mathrm{n}=297 \end{aligned}$	$\begin{gathered} 111.7 \\ (12.5) \\ n=43 \end{gathered}$	$\begin{aligned} & 107.4 \\ & (13.9) \\ & n=607 \end{aligned}$
CND Edition											
WAIS-III	1997			$\begin{gathered} 97.3 \\ (13.9) \\ \mathrm{n}=90 \end{gathered}$	$\begin{gathered} 98.6 \\ (15.2) \\ n=204 \end{gathered}$		$\begin{aligned} & 103.8 \\ & (13.7) \\ & \mathrm{n}=387 \end{aligned}$				108.7 (14.3) $\mathrm{n}=242$
Note. WAIS-R: Table 6 (Chastain \& Reynolds, 1984); WAIS-III (US): Table 4 to 8 and WAIS-III (CDN) Table 9 to 13 (Longman et al., 2007); WAIS-IV (US): Table 4.3 (Holdnack \& Weiss, 2013)											

Table 3

811 Descriptive data for each of the 106 undergraduate student samples included in the meta-analysis.

First	Affiliation/University	Year	$\begin{aligned} & \text { SAT } \\ & \text { Mdn } \end{aligned}$	Test	N	$\begin{gathered} \text { VIQ } \\ M \end{gathered}$	$\begin{aligned} & \text { VCI } \\ & M \end{aligned}$	$\begin{gathered} \text { FSIQ } \\ M \end{gathered}$	$\begin{gathered} \text { FSIQ } \\ S D \end{gathered}$	$\begin{gathered} \text { FSIQ } \\ \text { Imp. } \\ M \end{gathered}$	$\begin{gathered} \text { FSIQ } \\ \text { Imp. } \\ \text { SD } \end{gathered}$	$\begin{gathered} \text { FSIQ } \\ \text { Adj. } \\ M \end{gathered}$
Author.Year												
Aaron. 1985	Indiana State U	1983		WAIS-R	5	114.4		115	9.2	115	9.2	114.1
Abell. 1994	Loyola U of Chicago The Queen's Medical	1992	1230	WAIS-R	101	110		111	12.2	111	12.2	107.4
Acklin. 1989	Center Honolulu	1987		WAIS-R	125	109.6		109.2	11.3	109.2	11.3	107.2
Advokat. 2007	Louisiana State U	2005	1195	WAIS-III	30			108.7	9.2	108.7	9.2	106
Allen. 1954	U of Miami	1952	1335	WBIS	49			123	7.3	123	7.3	118.8
Allen. 1992	U of Mississippi	1990	1120	WAIS	50	103.3		103.6	14.3	103.6	14.3	92.8
Anderson. 1942	Wilson College	1940	1020	WBIS	112			118.5	7.2	118.5	7.2	117.9
Axelrod. 1997	Urban Commuter U	1995		WAIS-R	65			100.9	10.8	100.9	10.8	96.4
Bass. 1985	Towson State U	1983	1120	WAIS	60	112.1		111.6	7.3	111.6	7.3	102.9
Beaujean. 2006	U of Missouri Highlands Drive Veterans Administration Medical	2004	1215	WAIS-III	25			112		112	10	109.6
Beers. 1994	Center	1992		WAIS-R	22	102.5		104.5	11.4	104.5	11.4	100.9
Beglinger. 2000	U of Idaho	1998	1105	WAIS-R	50	111.6		113.8	9.6	113.8	9.6	108.4
Bell. 2001	The Citadel	1999	1120	WAIS-III	40	116.4	117.2	115.4	9.9	115.4	9.9	114.5
Birch. 2004	College At Brockport	2002	1080	WAIS-R	13	113.6		111.4	9.1	111.4	9.1	104.8
Birch. 2016	College At Brockport U of Southern	2014	1080	WAIS-R	16	117.1		117.1	8.3	117.1	8.3	106.9
Bishop. 1990	Mississippi	1988		WAIS-R	60			106.8	16.3	106.8	16.3	104.4
*Boer. 1988	Concordia College	1986		WAIS-R	20			111	13	111	13	109.2
Buchsbaum. 198												
5	U of California	1983	1330	WAIS	38	115.2		114.8		114.8	10	106.1
Burris. 1983	Western Kentucky U	1981	1080	WAIS-R	60	110.5		110.1	11.8	110.1	11.8	109.8
Calvin. 1955	Michigan State U	1953	1200	WBIS	36			122.8	9.2	122.8	9.2	118.2
Cannon. 2006	U of Tennessee	2004	1221.5	WAIS-III	8			124	6.8	124	6.8	121.6
Cannon. 2009	U of Tennessee	2007	1221.5	WAIS-III	14			117.6	10.2	117.6	10.2	114.3
Carson. 2005	Harward U	2003	1520	WAIS-R	184			129.4	10.9	129.4	10.9	122.5
Carvajal. 1987	Emporia State U	1986		WAIS-R	32	99.3		103.5	10.9	103.5	10.9	101.7
Carvajal. 1991	Emporia State U	1988		WAIS-R	31			106.4	12.4	106.4	12.4	104
Carvajal. 1996	Emporia State U	1994		WAIS-R	44	106.3		109	12.2	109	12.2	104.8
Clifford. 2004	Villanova U	2002	1390	WAIS-III	105			100		100	10	98.2
Clifford. 2004	Villanova U	2002	1390	WAIS-III	101			110.7	7.7	110.7	7.7	108.9
Cole. 1956	Occidental College	1954	1365	WBIS	46	125		127		127	10	122.2
Conry. 1965	San Jose State College	1963	1125	WAIS	335	115.1		114.8	8	114.8	8	112.1
Cosden. 1997	U of California	1995	1345	WAIS-R	50			121.3	8	121.3	8	116.8
*Crawford. 1985	U of Alberta	1983		WAIS-R	38	110.5		110.4	11.7	110.4	11.7	109.5
Davis. 2016	Ball State U	2014		WAIS-III	41	110.4		111.1	9.4	111.1	9.4	105.7
Dennis. 1978	Western Kentucky U Case Western Reserve	1975	1080	WAIS	310	113.2		112.4	10.1	112.4	10.1	106.1
Detterman. 1992	U	1990	1430	WAIS-R	20			115.6	7.8	115.6	7.8	112.6
Dodd. 2000	U of North	1998	1115	WAIS-R	100			101.8	9.4	101.8	9.4	96.4

Pilgrim. 2000	U of South Dakota	1998	1122.5	WAIS-III	100	109.8	108.6	110.9	11.1	110.9	11.1	110.3
Plant. 1959	San Jose State College	1957	1125	WAIS	732	115.6		115.2	8.8	115.2	8.8	114.3
Quereshi. 1985	Marquette U	1983	1250	WAIS	72	116.5		119.4	8	119.4	8	110.7
Quereshi. 1985	Marquette U	1983	1250	WBIS	72	112.4		118.5	8.7	118.5	8.7	105.0
Quereshi. 1985	Marquette U Pennsylvania State	1983	1250	WAIS-R	72	113.4		115.7	9.7	115.7	9.7	114.8
Rakusin. 1949	College	1947	1185	WBIS	80	122		125.1	5.8	125.1	5.8	122.4
Ratcliff. 2010	Bryn Mawr College	2008		WAIS-III	45			112.1	14.2	112.1	14.2	108.5
Rossini. 1994	Roosevelt U	1992	1015	WAIS-R	32	101.2		101.3	10.8	101.3	10.8	97.7
Ruble. 1980	Ball State U	1978.5		WAIS	60	102.8		104.6	7.1	104.6	7.1	97.2
Salvia. 1986	Pennsylavania State U	1984	1185	WAIS-R	100	122.7		124.6	9	124.6	9	123.4
Salvia. 1988	Pennsylavania State U	1986	1185	WAIS-R	74	122.9		124.5	9.6	124.5	9.6	122.7
Sartain. 1946	Southern Methodist U	1942.5	1350	WBIS	50	115.4		117.5	10.5	117.5	10.5	116.1
Sedlacek. 1976	Washington State U	1966.5	1115	WAIS	276	119.7		119	8.2	119	8.2	115.2
Shaw. 1965	State Hospital	1963		WAIS	100	119.6		119.6	9.1	119.6	9.1	116.8
Sheckart. 1976	Towson State College	1974	1120	WAIS	36	101.9		99.4		99.4	10	93.4
Sheldon. 1959	Colorado State College	1957	1175	WAIS	20			109		109	10	108.1
Small. 1987	U of Nevada Rosemead School Of	1985	1140	WAIS-R	28	112.2		110.8	13.3	110.8	13.3	109.3
Smith. 1983	Psychology Rosemead School Of	1981	1180	WAIS	35	116.1		117.7	8.7	117.7	8.7	109.6
Smith. 1983	Psychology	1981	1180	WAIS-R	35	108.2		109.1	9.7	109.1	9.7	108.8
Sorensen. 1968	Northern Illinois U	1966		WAIS	202			119.3	8.8	119.3	8.8	115.7
Steisel. 1951	State U of Iowa	1949	1210	WBIS	34			116.8	8	116.8	8	113.5
Storrs. 1952 *Thompson. 199	U of Florida	1950	1375	WBIS	50	115.8		118.4	9.4	118.4	9.4	114.8
9	Lakehead U	1997		WAIS-R	80	101		102.9	11.1	102.9	11.1	97.8
Titus. 2002	Ball State U	2000		WAIS-III	51	105.1		107.3	11.4	107.3	11.4	106.1
Verney. 2005	San Diego State U	2003	1195	WAIS-R	75	101.7		102.5		102.5	10	95.6
Walls. 1962	Pennsylvania State U	1960	1185	WAIS	106	120.6		118.9	8.7	118.9	8.7	117.1
Ward. 1989	Texas A\&M	1987	1270	WAIS-R	73	114.4		118.2		118.2	10	116.1
Weyandt. 2002	Central Washington U	2000	1040	WAIS-R	62		101.1	102.5	10.1	102.5	10.1	96.5
Whitworth. 1986	U of Texas El Paso	1984		WAIS	75	107.6		109.4		109.4	10	100.4
Whitworth. 1986	U of Texas El Paso	1984		WAIS-R	75	101.1		103.6		103.6	10	102.4
Young. 2020	U of Texas	2018	1340	WAIS-IV	67			116	10.7	116	10.7	112.7

Note. * = Canadian sample; FSIQ Imp. = FSIQ w/Imputed missing values imputed; FSIQ Adj. = 813 FSIQ w/Adjustment for Flynn Effect (0.3 IQ points per year)

	Normative samples (US)		Normative samples (CDN)		Current Study (US data)	
Test/ Standardization Year	$\begin{aligned} & 13-15 \\ & \text { Years } \end{aligned}$	16+ Years	$\begin{aligned} & 13-15 \\ & \text { Years } \end{aligned}$	$\begin{aligned} & 16+ \\ & \text { Years } \end{aligned}$	Unadjusted	Adjusted
WBIS/1938					121.2	118.2
WAIS/1954					118.4	115.1
WAIS-R/1980	107.4	115.3			113.9	110.1
WAIS-III/1996	103.6	111.6	103.8	108.7	111.2	107.0
WAIS-IV/2007	101.4	107.4			109.3	104.9
2022					106.7	102.0

Table 4

Mean FSIQs of WAIS normative samples with 13-15 and 16+ years of education and estimated mean FSIQs of undergraduate students at the time of Wechsler tests' standardizations based on the current study.

Table 5

An extract from Dr. W's expert report: Dr. W's opinions about Ms. T's intelligence based on multiple obsolete IQ norms and data sets.
On September 21, 2021, in response to a critique of her work, Dr. W wrote in her expert report that "Data on the typical level of intelligence or general mental ability seen within a population of teachers is in fact available in the scientific literature." and proceeded to rely on Gottfredson (2003), Schmidt \& Hunter (2004), and Gottfredson (1998) to claim that Ms. T’s twice assessed average WAIS-IV CDN (Wechsler, 2008) FSIQ was at the bottom 2% of all teachers.

Relying on Gottfredson (2003), Dr. W wrote:
The table below, which is extracted from a book chapter by Dr. Linda Gottfredson, shows that on average teachers' general cognitive ability is above average, estimated at $81^{\text {st }}$ percentile and equivalent to an IQ score of 113

Relying on Schmidt and Hunter (2004), Dr. W wrote:
Beyond the data provided by Gottfredson, there is also empirical data about the intellectual abilities of teachers provided by a paper by Schmidt \& Hunter, which is reproduced here.

The partially reproduced Table 1 from Schmidt and Hunter (2004) in Dr. W’s report indicated that 256 "Teacher[s]" had mean GCT [US Army General Classification Test] standard score of 122.8 , median of 123.7 , SD of 12.8 , and range of $76-155$. Dr. W continued:

The data ($\mathrm{N}=256$) shows that mean intelligence for teachers (measured with the military's General Classification Test) was 122.8 with a standard deviation of 12.8 , just below the scores for other professional occupations such as chemist, auditor, and engineer, and clearly above average.

Relying on Gottfredson (1998) figure published in and copied from Scientific American, Dr. W wrote:
... Note that teachers' intellectual abilities are lumped with those of accountants and managers and clearly fall within the above average range (IQ 110-125; top 25% of the population)...

Dr. W then opined:
Based on my calculations, Ms. T's measured IQ of 86 [WAIS-IV Canadian Edition, Dr. W's assessment, while Ms. T was physically ill, vomiting, etc., according to Dr. W's own September 15, 2010 report; IQ of 91 WAIS-IV CDN, Dr. K’s assessment four months later] is 2 standard deviations below the average requirement for teachers.

Figure 1

WAIS (Wechsler, 1955) FSIQ, career potential, training potential and life chances as per Gottfredson (1997, 1998, 2002, 2003). Gottfredson's views are based on Wonderlic Personnel Test (WPT) (Wonderlic, 1992) data translated to WAIS FSIQ (Wechsler, 1955) and published in Wonderlic (1992).

Figure 2
Increases in educational attainment in USA for adults 25 years or older, from 1940 to 2021 (US Census, 2022).

Figure 3
IQ range of the middle 95\% of the college graduates (16+ years of education) and individuals with some college education (13-15 years of education), respectively, within WAIS-R, WAIS-III, and WAIS-IV US Editions normative samples.

857
858

Figure 4

Mean SAT ERW and Math scores for the 2021 high school graduates who took SAT during high school by intended college major SAT.

Figure 5

Mean GRE Verbal and Quantitative scores by intended broad graduate major field for individuals tested between 2017 and 2020.

Figure 6
The IPEDS data for US colleges and universities. Top left panel shows the relationship between the means SAT Math and SAT ERW scores of admitted students. Top right panel shows the relationship between the means of SAT Total and ACT Composite scores of admitted students. Bottom left panel shows the The relationship between admission rate and SAT Total of admitted students. Bottom right panel shows the distribution of SAT Total means of admitted students - the solid vertical line represents the mean SAT Total of the Nationally Representative Sample and dashed vertical lines indicate $\pm 1 S D$.

Figure 7

PRISMA flowchart showing the records identified, excluded, coded, and the number of coded data sets/Wechsler mean IQs.

877

Figure 9
A relationship between mean FSIQ adjusted for Flynn Effect and year of assessment for the US u / g samples ($k=102$). The figure includes the meta-regression line with 95% CI bands.

Figure 10

Mean FSIQ for WAIS-R, WAIS-III, and WAIS-IV US Editions and WAIS-III CDN Edition normative samples and for US undergraduate students in the new meta-analysis (with Flynn Effect adjustment). For WAIS normative samples, mean FSIQs are shown for all examinees with $16+$ years of education vs with 13-15 years of education.

[^0]: This paper was previously peer-reviewed and accepted for publication by Frontiers in Psychology on January 4, 2024. On or about January 4, 2024, Frontiers published the abstract of the accepted paper on frontiersin.org (https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1309142/abstract). As per the Frontiers' production proofs, the accepted paper was reviewed by: (a) Sebastian Weirich, Institute for Education Quality Improvement (IQB), Germany; (b) Peter Graf, University of British Columbia, Canada; and (c) Stewart Longman, University of Calgary, Canada, and edited by: Snehlata Jaswal, Sikkim University, India. The Frontiers' uploaded proofs on January 9, 2024; and the corresponding author submitted the author's proof corrections on January 12, 2024.

 By February 6, 2024, the paper abstract posted on the Frontiers website accumulated Altmetrics score of over 1,600; over 50,000 total views (https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1309142/ abstract); and over 2,000 X posts from X users (https://frontiers.altmetric.com/details/158097957).

